Development of a Saudi Palliative Care Essential Medication List

Sami Ayed Alshammary1, Yacoub Abuzied1

1King Fahad Medical City, Riyadh, Saudi Arabia

Introduction: In response to the request of the Saudi Health Council, an expert palliative multi-disciplinary central committee was created to develop a model of the essential Saudi palliative medication list (EML), to be updated every 2 years, based on the World Health Organization (WHO) criteria for EML. Our problem is that most palliative patients do not have access to the necessary drugs, despite evidence of drug efficacy, to alleviate their most common symptoms. Our aim was therefore to explore the degree of consensus among physicians working in specialist palliative care (PC) regarding appropriate pharmacological treatment for common symptoms for palliative patients with cancer, and to develop a national list of essential medicines for PC, based on expert opinion, that will serve as a key aid for decision making in future practice.

Methods: We conducted a descriptive cross-sectional study of all consultants from July 2020 to August 2020. Our population included PC consultants who were selected based on their expertise. Demographics, career history as a PC physician, and a multidisciplinary team were among the information gathered. A structured questionnaire was used to collect the data, the data were analyzed using Statistical Package for the Social Sciences (SPSS) version 25. Descriptive data were reported as frequencies and percentages to examine the distribution of study variables among the three categories. A standardized questionnaire was used, with an emphasis on the particular frequency of treatment used by the WHO EML. The central committee distributed the surveys to top PC experts in the KSA. Experts were defined as physicians currently working in specialist PC units, with at least 2 years of practice as a PC physicians. The selection criteria were as follows: senior PC consultant, academic or research interest, and geographical distribution of different healthcare providers. All participants were recruited from different KSA regions in the PC units through each PC unit’s representative. Representatives were asked to contact experts. The selected physicians from different PC units received an e-mail invitation to participate in the survey to develop the final list by listing their first and second choices of generic drugs. Results: A total of 12 consultants participated in the study, 72.7% of whom were female and 18.2% of whom were male. Working experience ranged from less than 5 years to more than 11 years. Of the participants, 36.4% had 6 to 10 years of experience. The percentage of participants with less than 5 years and more than 11 years of experience was 27.3% in each group. Participants were from the Ministry of Defense Hospitals (9.1%), Ministry of Health Hospitals (72.7%), and Ministry of the Interior Hospitals (9.1%). The top palliative consultant experts in the Kingdom of Saudi Arabia participated in the study, with a high level of consensus among the experts. More than 60 medications were included in the review. The survey influenced the PC medication list following consensus. The preference for medication was grouped into three categories — mandatory, necessary, and optional — based on administration frequency and the specified categories. The “mandatory” medications such as baclofen tablets, loperamide, ibuprofen tablets, midazolam injections, Tylenol III and fentanyl injections, morphine injections, morphine (IR) syrup, and morphine (SR) tablets were considered. The “necessary” medications such as modafinil tablets, morphine (SR) 60 mg, megestrol, and prednisone were considered. The “optional” medications included the following: fentanyl 500 mcg injections, hydrocortisone cream, and atropine eye drops. Conclusion: The drugs prescribed and reported in this survey can be incorporated with the WHO EML, which in turn can lead to a constructive change in local drug policies and provide a basis for the minimum standard of care for PC institutions.
Utilizing the Failure Mode and Effect Analysis Tool for Improving the Automatic Stop Order Process
Ghada Al Mardawi¹, Rajkumar Rajendram¹, Arwa Balharith¹
¹King Abdulaziz Medical City, Riyadh, Saudi Arabia

Introduction: A medication automatic stop order (ASO) is often used to predefine the length of a treatment course. By limiting the duration of therapy, ASOs can optimize the safe and effective use of medications. However, in some reported incidents, the termination of a medication’s prescription by an ASO has resulted in the omission of doses, and consequently, patient harm and increased cost. This system failure may have several possible root causes. We therefore conducted a Failure Mode and Effect Analysis (FMEA) to systematically review and analyze the current ASO process at our institution. The aim of this intervention was to prepare an improvement action plan and optimize the workflow to prevent the reoccurrence of medication errors due to ASOs.

Methods: The FMEA tool used at King Abdulaziz Medical City (KAMC) was adapted from the Institute of Healthcare Improvement (IHI). The multidisciplinary FMEA team included representatives from the departments of medicine, pharmacy, nursing, IT, quality, and medication safety. Over the course of seven 1-hour long meetings, the team reviewed and discussed the medication ASO workflow as described below. Step 1: Review and label each process in the current workflow. Step 2: Review and suggest potential failure modes, failure effects, and failure causes for each process. Step 3: Score the severity, likelihood of occurrence, and likelihood of detection of each failure. Step 4: Calculate the Risk Profile Number (RPN). Step 5: Recommend actions to prevent the occurrence of each failure. Step 6: Score the recommended actions for the severity, likelihood of occurrence, and likelihood of detection and then calculate the RPN. Step 7: compare the RPN for each process before and after implementation of the action. After finalizing all steps, the medication safety officer prepared a report with a summary detailing the recommended action plan to the relevant departments with expected timeline for implementation. Results: Several interventions were suggested to prevent medication errors from dose omissions due to ASOs. These included modifications to our institution’s Health Informatics System and computerized prescription order entry system, revision of the relevant hospital policies and procedures, redesigning in the workflow and task assignment, providing education and awareness campaigns for staff, auditing the implementation of the recommended actions and monitoring the effects of changes on the incidence of medication errors.

Conclusion: The use of FMEA when introducing a new process or modifying an existing process can identify possible system failures. These failures can then be addressed before the implementation of the new process. This may prevent errors, improve medication safety, and decrease the cost due to adverse events.

Assessing the Nurses Work Involvement in a Selected Hospital – A Case Study
Suneetha Raghu¹,², Linus Benedicta D Souza¹
¹Institute of Management & Commerce, Srinivas University, Mangalore, Karnataka, India; ²R L Jalappa Ayurveda Panchakarma Center, Tamaka, Kolar, India

Introduction: Nurses play a significant role in healthcare environments by directly caring for patients, working with other healthcare workers, and ensuring that the facility runs efficiently. This study aims to assess nurses involvement at a specific hospital with respect to several goals include nursing practices, patient care, healthcare administration, and overall hospital performance. This study may identify possible inefficiencies and regions of high demand to improve patient care and workforce management. The study will define and understand the variables of job involvement among the nurses at the selected hospital.

Methods: The descriptive survey study will be carried out in a particular hospital. All nurses who are employed by the hospital and agree to participate will be included among the respondents. Work involvement questionnaires will be used to gather data, which will be analyzed using descriptive statistics. A nurse who refuses to participate, is absent, or takes a prolonged leave of absence during the data collection will be excluded. Results: The nurses’ work involvement will be assessed utilizing both the mean and percentages. Conclusion: The study will draw conclusions about nurses work involvement in daily operations.