This protocol is intended to assist pathologists in providing clinically useful and relevant information as a result of the examination of surgical specimens. Use of this protocol is intended to be entirely voluntary. If equally valid protocols or similar documents are applicable, the pathologist is, of course, free to follow those authorities. Indeed, the ultimate judgment regarding the propriety of any specific procedure must be made by the physician in light of the individual circumstances presented by a specific patient or specimen.
It should be understood that adherence to this protocol will not guarantee a successful result. Nevertheless, pathologists are urged to familiarize themselves with the document. Should a physician choose to deviate from the protocol based on the circumstances of a particular patient or specimen, the physician is advised to make a contemporaneous written notation of the reason for the procedure followed.
The College recognizes that this document may be used by hospitals, attorneys, managed care organizations, insurance carriers, and other payers. However, the document was developed solely as a tool to assist pathologists in the diagnostic process by providing information that reflects the state of relevant medical knowledge at the time the protocol was first published. It was not developed for credentialing, litigation, or reimbursement purposes. The College cautions that any uses of the protocol for these purposes involve considerations that are beyond the scope of this document.
PROTOCOL FOR THE EXAMINATION OF SPECIMENS FROM PATIENTS WITH TUMORS OF THE BRAIN/SPINAL CORD
I. Cytologic Material
A. Clinical information
1. Patient identification
a. Name
b. Identification number
c. Age (birth date)
d. Gender
2. Responsible physician(s)
3. Date of procedure
4. Other clinical information
a. Relevant history (note A)
b. Relevant findings (note B)
c. Clinical/imaging differential diagnosis
d. Procedure (eg, percutaneous fine-needle aspiration)
e. Anatomic site of specimen (note C)
B. Macroscopic examination
1. Specimen
a. Unfixed/fixed (specify fixative) (note D)
b. Number of slides received, if appropriate
c. Cytologic preparation of tissue specimen (touch or squash preparation)
2. Material submitted for microscopic evaluation (eg, smear of fluid, cell block) (note E)
3. Special studies (eg, cytochemistry, immunocytochemistry, microbiology, flow cytometry) (note F)
C. Microscopic evaluation
1. Adequacy of specimen for diagnostic evaluation (if unsatisfactory or limited, specify reason)
2. Tumor
a. Histologic type, if possible (note G)
3. Other pathologic findings
4. Results/status of special studies (specify)
5. Comments
a. Correlation with intraoperative consultation
b. Correlation with other specimens
c. Correlation with clinical information (note H)
II. Biopsy
A. Clinical information
1. Patient identification
a. Name
b. Identification number
c. Age (birth date)
d. Gender
2. Responsible physician(s)
3. Date of procedure
4. Other clinical information
a. Relevant history (note A)
b. Relevant findings (note B)
c. Clinical/imaging differential diagnosis
d. Procedure (eg, stereotactic needle core biopsy, open biopsy)
e. Anatomic site of specimen (note C)
B. Macroscopic examination
1. Specimen
a. Unfixed/fixed (specify fixative) (note D)
b. Size (number of cores or size of biopsy in dimensions or approximate volume)
c. Descriptive features (grossly obvious meninges, gray matter or white matter, color, texture, cut surface, mucinous, fibrous, bloody, necrotic, gritty)
d. Recognition of gross and microscopic correlates is helpful in correct interpretation of microscopic findings and is also helpful in selecting cores for frozen section analysis
2. Special studies (note F)
a. Frozen sections, if requested
b. Squash, touch, or scrape preparations
c. Histochemistry
d. Immunohistochemistry
e. Electron microscopy
f. Other (microbiology, flow cytometry, cytogenetics, molecular diagnostics)
g. Was a portion of tissue frozen for later potential studies?
3. Tissue submitted for microscopic evaluation: The specimen is usually totally submitted after removing tissue for frozen sections, electron microscopy, or other special studies as indicated in note F. Try to orient at right angles to surface.
C. Microscopic evaluation
1. Tumor
a. Histologic type (note I)
b. Histologic grade (note J)
c. Additional features, if present
(1) Hemosiderin deposition
(2) Calcification
(3) Microcyst formation
(4) Mitotic activity
(5) Pleomorphism
(6) Presence of gemistocytes
(7) Vascular proliferation
(8) Necrosis
d. Findings in squash, touch, or scrape preparations (note K)
2. Status/results of special studies (specify)
3. Comments
a. Correlation with intraoperative consultation
b. Correlation with previous specimens
c. Correlation with clinical information (note H)
III. Resection
A. Clinical information
1. Patient identification
a. Name
b. Identification number
c. Age (birth date)
d. Gender
2. Responsible physician(s)
3. Date of procedure
4. Other clinical information
a. Relevant history (note A)
b. Relevant findings (note B)
c. Clinical/imaging differential diagnosis
d. Procedure (total, subtotal, or partial resection)
e. Operative findings
f. Anatomic site of specimen (note C)
B. Macroscopic examination
1. Specimen
a. Unfixed/fixed (specify fixative) (note D)
b. Number of pieces with combined aggregate dimensions (the extent of resection can have prognostic significance) (note A)
c. Descriptive features (grossly obvious meninges, gray matter or white matter, color, texture, cut surface, mucinous, fibrous, bloody, necrotic, gritty)
d. Recognition of gross and microscopic correlates is helpful in correct interpretation of microscopic findings and is also helpful in selecting cores for frozen section analysis
e. Margins, as appropriate. For the majority of central nervous system neoplasms, margins are not evaluated because specimens are fragmented. Exceptions would be some meningeal or metastatic tumors.
f. Results of intraoperative consultation
2. Tissue submitted for microscopic evaluation. The specimen is usually totally submitted after removing tissue for frozen sections, electron microscopy, or special studies, as suggested in note F.
3. Special studies (note F)
a. Frozen sections, if requested
b. Squash, touch, or scrape preparations
c. Histochemistry
d. Immunohistochemistry
e. Electron microscopy
f. Receptor analysis
g. Other (microbiology, flow cytometry, cytogenetics, molecular diagnostics)
h. Was a portion of tissue frozen for later potential studies?
C. Microscopic evaluation
1. Tumor
a. Histologic type (note I)
b. Histologic grade (note J)
c. Local extension (eg, bony or soft tissue invasion, subarachnoid spread; note K)
d. Additional features, if present
(1) Hemosiderin deposition
(2) Calcification
(3) Microcyst formation
(4) Mitotic activity
(5) Pleomorphism
(6) Presence of gemistocytes
(7) Vascular proliferation
(8) Necrosis
e. Findings in squash, touch, or scrape preparations (note K)
2. Status/results of special studies (specify)
3. Comments
a. Correlation with intraoperative consultation
b. Correlation with previous specimens
c. Correlation with clinical information (note H)
EXPLANATORY NOTES
A: Relevant History.—Patient Age.—Most central nervous system (CNS) tumors show an age predilection, and patient age has been shown to predict survival in many malignant CNS neoplasms. With diffusely infiltrating astrocytic tumors, age followed by histologic grade represent the 2 strongest prognostic indicators for patient outcome, with patient age older than 50 years and high-grade tumors serving as negative indicators.1–4
Duration of Symptoms (Acute or Chronic).—A long clinical history of CNS symptoms or seizures prior to the diagnosis of a CNS tumor favors a slowly growing neoplasm that is more likely to be benign. A rapidly progressive neurological deficit of sudden onset is more consistent with, but not always indicative of, a high-grade malignant tumor.5
Extent of Resection.—For most CNS tumors, the amount of tumor removed (total, subtotal, or partial resection) is an important predictor of patient outcome.3,4,6
The extent of resection can be estimated by recording the gross dimensions of the aggregate pieces. In most operating rooms, a suction device is frequently used in conjunction with gross debulking to remove tumors. We recommend that the surgical team be encouraged to submit the suction specimen to surgical pathology. This will serve to better estimate the extent of resection, and the tissue present in the suction specimen might be critical in making the correct diagnosis.
Tumor Location and Size.—The extent of surgical resection possible is determined by tumor location and size.
Previous Diagnoses.—Knowledge of the presence or absence of extracranial disease, that is, a history of immunosuppression or a history of a primary malignant neoplasm outside the CNS, can be critical in the correct interpretation of biopsy material.5 If a metastatic tumor is included in the differential diagnosis, it is helpful to have slides of the primary tumor available.
Previous CNS Biopsies.—History of radiation or radiosurgery.—Knowledge of prior radiation therapy or radiosurgery can help in interpreting specimens in which there are large areas of radiation change (eg, coagulative necrosis, gliosis, vascular hyalinization).7(pp125,126) Central nervous system tumors noted to arise in a field of prior irradiation include meningiomas, meningeal sarcomas, astrocytomas, primitive neuroectodermal tumors, and gliosarcomas.7(pp586–587) Radiation therapy of diffusely infiltrating astrocytomas has been shown to increase survival.3,8
Family History of Cancer or Primary CNS Tumors.
B: Relevant Findings.—Imaging Features (density; enhancement pattern; well-circumscribed or infiltrative borders; cyst formation; calcification; location [intraventricular]; white matter, gray matter, or both).—Recognition of characteristic imaging patterns and locations of CNS tumors is important in correct interpretation of biopsy specimens, for example, low-grade infiltrating astrocytomas usually do not enhance, whereas high-grade ones do.5 Tumor enhancement and peritumoral edema in infiltrating astrocytomas are associated with a worse prognosis, and diffuse tumors have been shown to have a poorer prognosis than focal ones.9,10
C: Anatomic Site of Specimen.
Cytologic Material
Cerebrospinal fluid (ventricular, lumbar, cisternal)
Cyst fluid
Fine-needle aspiration
Percutaneous (specify site)
Stereotactic computed tomography–guided
Other
Biopsy or Resection
Dura (convexity, falx, tentorium, sphenoid wing, skull base)
Leptomeninges
Cerebrum (specify lobe: frontal, parietal, temporal, occipital)
Basal ganglia
Thalamus
Hypothalamus
Pituitary
Suprasellar area
Pineal
Cerebellum (specify lobe: right or left hemisphere, midline or lateral)
Cerebellopontine angle
Ventricle (third, lateral, fourth)
Brain stem (midbrain, pons, or medulla)
Spine (extradural, intradural/extramedullary, intradural/intramedullary, conus medullaris, filum terminale)
Nerve root(s)/canal (extradural, intradural, anterior root or posterior root)
D: Specimen Unfixed/Fixed.—Cytologic Material.—Cytologic preservation in cerebrospinal fluid depends on the time interval before processing, especially for hematopoietic and some neuroepithelial cells. Refrigerate if delayed more than 30 to 45 minutes. Record the time interval to aid in interpretation.
Biopsy or Resection.—Cellular detail is very important for interpreting CNS neoplasms, and previously frozen tissue is suboptimal, especially for grading and subclassifying gliomas. Recommendations for optimally freezing and cutting frozen sections from tissue from the brain and spinal cord have been made in a previously published article.5 Make every attempt to retain tissue that has not been previously frozen for permanent sections. Avoid using sponges in cassettes because they produce angular defects, which resemble vascular/luminal spaces in the final sections. Wrapping small biopsies in lens paper prior to placing them in cassettes is recommended.5
E: Cytologic Material Submitted for Microscopic Evaluation.—Cytospin slides or liquid-based monolayer cytology, both air-dried Romanowsky-stained and fixed Papanicolaou-stained slides, as well as unstained slides, should be prepared from fluid specimens, especially cerebrospinal fluid, meningeal fluid, and tumoral cyst fluid.
F: Special Studies.—It may be necessary to divide biopsy/resection tissue into portions for the following procedures:
Squash, touch, or scrape preparations
Unfrozen permanent paraffin sections
Frozen sections, if requested
Electron microscopy (retain a small portion in 3% glutaraldehyde or “embed and hold” for electron microscopy if necessary)
Other (microbiology, flow cytometry, cytogenetics, molecular diagnostics)
Frozen tissue, if requested (freeze fresh tissue as soon as possible and store at −70°C), especially for possible future molecular diagnostic studies
When the tissue is a biopsy and the tissue sample is small, the order of priority for processing tissue for the procedures outlined above is as listed. Recommendations for optimally freezing and cutting frozen sections from tissue from the brain and spinal cord have been made in a previously published article.5 If biopsy frozen and permanent sections are nondiagnostic, tissue that was retained in 3% glutaraldehyde could be submitted for electron microscopy or for additional paraffin sections, depending on the amount of tissue available, with the hope of making a diagnosis. Some pathologists may choose to examine semithin or 1-μm-thick stained sections with toluidine blue instead.
Squash preparations are prepared by placing a tiny (1–2 mm) fragment of tissue onto a glass slide, placing another glass slide over it, pressing the slides together, squashing the tissue between them, then sliding the 2 slides past each other, dragging squashed tissue across each slide. Slides are then rapidly placed into fixative in the same rack used for frozen sections and stained as for frozen sections.5
Squash preparations are recommended for most CNS lesions. Touch preparations are recommended for pituitary adenomas, oligodendrogliomas, and lymphomas. Scrape preparations, in which tissue is scraped with a scalpel blade and scrapings are applied to glass slides and stained similar to squash and touch preparations, are recommended for desmoplastic tumors, such as dural metastases that cannot be squashed or do not shed well on touch preparations.
If infectious etiologies are suspected, a portion of fresh tissue can be sent to the microbiology laboratory in a sterile container to be processed for bacterial, fungal, or viral cultures. Tissue from patients with symptoms suggestive of spongiform encephalopathy (Creutzfeldt-Jakob disease) requires special handling. The infectious agent of Creutzfeldt-Jakob disease may be inactivated by immersing formalin-fixed tissue in 50 to 100 mL of pure formic acid for 1 hour, followed by reimmersion in fresh formalin.11 While the clinical diagnosis of spongiform encephalopathy encompasses a spectrum of neurologic dysfunction, rapidly progressive dementia and myoclonus are especially suggestive of this diagnosis.12
If a lymphoproliferative disorder is suspected, a portion of fresh tissue can be sent to the surgical pathology laboratory, where it will be placed in appropriate holding media (RPMI) for flow cytometry. Refer to a previously published protocol for processing specimens from patients with non-Hodgkin lymphoma.13
Molecular diagnostic testing is playing an increasingly important role in the diagnosis, staging, and treatment of tumors.14 Tissue that has been frozen shortly after arrival in the laboratory and stored at −70°C will be suitable for these studies. Paraffin-embedded tissue can also occasionally be used.
G: Cytopathology: Histologic Type.—Tumor cells, especially those of glial lineage, are often altered by time in fluid/cerebrospinal fluid and are difficult to interpret unless cell clusters of tissue fragments are available. Choroid plexus and ependymal cells are quite similar, with the latter showing more “degenerative” cytologic features and fewer cellular clusters. Therefore, the designation choroid-ependymal cells is appropriate. Ependymomas and choroid plexus papillomas generally appear cytologically benign or bland. It is helpful to prepare squash preparations routinely during intraoperative consultations to develop or keep a sharp cytologic eye for CNS neoplasms.
H: Comments.—Correlation of clinical and radiographic information should be critically reviewed before final sign-out of the biopsy diagnosis.15
I: Histologic Type.—The World Health Organization (WHO) classification of tumors of the central nervous system is shown below.16
WHO Histologic Typing of Tumors of the Nervous System
TUMORS OF NEUROEPITHELIAL TISSUE
Astrocytic Tumors
Diffuse astrocytoma
Fibrillary astrocytoma
Protoplasmic astrocytoma
Gemistocytic astrocytoma
Anaplastic astrocytoma
Glioblastoma
Giant cell glioblastoma
Gliosarcoma
Pilocytic astrocytoma
Pleomorphic astrocytoma
Pleomorphic xanthoastrocytoma
Subependymal giant cell astrocytoma
Oligodendroglial Tumors
Oligodendroglioma
Anaplastic oligodendroglioma
Mixed gliomas
Oligoastrocytoma
Anaplastic oligoastrocytoma
Ependymal Tumors
Ependymoma
Cellular
Papillary
Clear cell
Tanycytic
Anaplastic ependymoma
Myxopapillary ependymoma
Subependymoma
Choroid Plexus Tumors
Choroid plexus papilloma
Choroid plexus carcinoma
Glial Tumors of Uncertain Origin
Astroblastoma
Gliomatosis cerebri
Chordoid glioma of the third ventricle
Neuronal and Mixed Neuronal-Glial Tumors
Gangliocytoma
Dysplastic gangliocytoma of cerebellum (Lhermitte-Duclos)
Desmoplastic infantile astrocytoma/ganglioglioma
Dysembryoplastic neuroepithelial tumor
Ganglioglioma
Anaplastic ganglioglioma
Central neurocytoma
Cerebellar liponeurocytoma
Paraganglioma of the filum terminale
Neuroblastic Tumors
Olfactory neuroblastoma (esthesioneuroblastoma)
Olfactory neuroepithelioma
Neuroblastomas of the adrenal gland and sympathetic nervous system
Pineal Parenchymal Tumors
Pineocytoma
Pineoblastoma
Pineal parenchymal tumor of intermediate differentiation
Embryonal Tumors
Medulloepithelioma
Ependymoblastoma
Medulloblastoma
Desmoplastic medulloblastoma
Large cell medulloblastoma
Medullomyoblastoma
Melanotic medulloblastoma
Supratentorial primitive neuroectodermal tumor
Neuroblastoma
Ganglioneuroblastoma
Atypical teratoid/rhabdoid tumor
TUMORS OF PERIPHERAL NERVES
Schwannoma (neurilemmoma, neurinoma)
Cellular
Plexiform
Melanotic
Neurofibroma
Plexiform
Perineurioma
Intraneural perineurioma
Soft tissue perineurioma
Malignant Peripheral Nerve Sheath Tumor
Epithelioid
Malignant peripheral nerve sheath tumor with divergent mesenchymal and/or epithelial differentiation
Melanotic
Melanotic psammomatous
TUMORS OF THE MENINGES
Tumors of Meningothelial Cells
Meningioma
Meningothelial
Fibrous (fibroblastic)
Transitional (mixed)
Psammomatous
Angiomatous
Microcystic
Secretory
Lymphoplasmacyte-rich
Metaplastic
Clear cell
Chordoid
Atypical
Papillary
Rhabdoid
Anaplastic meningioma
Mesenchymal, Nonmeningothelial Tumors
Lipoma
Angiolipoma
Hibernoma
Liposarcoma (intracranial)
Solitary fibrous tumor
Fibrosarcoma
Malignant fibrous histiocytoma
Leiomyoma
Leiomyosarcoma
Rhabdomyoma
Rhabdomyosarcoma
Chondroma
Chondrosarcoma
Osteoma
Osteosarcoma
Osteochondroma
Hemangioma
Epithelioid hemangioendothelioma
Hemangiopericytoma
Angiosarcoma
Kaposi sarcoma
Primary Melanocytic Lesions
Diffuse melanocytosis
Melanocytoma
Malignant melanoma
Meningeal melanomatosis
Tumors of Uncertain Histogenesis
Hemangioblastoma
LYMPHOMAS AND HEMOPOIETIC NEOPLASMS
Malignant lymphomas
Plasmacytoma
Granulocytic sarcoma
GERM CELL TUMORS
Germinoma
Embryonal carcinoma
Yolk sac tumor (endodermal sinus tumor)
Choriocarcinoma
Teratoma
Mature
Immature
Teratoma with malignant transformation
Mixed germ cell tumors
TUMORS OF THE SELLAR REGION
Craniopharyngioma
Adamantinomatous
Papillary
Granular cell tumor
METASTATIC TUMORS
J: Histologic Grade.—The WHO grading system (malignancy scale) of CNS tumors is shown below.16 There is no formal TNM-based classification and staging system for the CNS at this time.17
After patient age, tumor histology and grade have been shown to be the strongest predictors of clinical course in selected CNS astrocytomas.2,18 Several grading systems for diffusely infiltrating astrocytomas have been proposed, based on their ability to define distinct patient groups with significantly different survival curves. Both 3-tiered and 4-tiered systems are currently in use and have been reviewed.19 Two examples of popular grading systems are shown below.16 For a complete review and comparison of these systems, including the 3-tiered system such as the Ringertz system and modifications thereof, the reader is referred to the review by McClendon et al.19
Comparison of the WHO and St. Anne/Mayo Grading Systems for Astrocytomas.16
K: Other Pathologic Features.—Hemosiderin deposition, calcification, and microcyst formation are nonspecific findings that occur in both malignant and benign CNS neoplasms. However, in general, calcification usually favors a slowly growing neoplasm, which is more likely to be benign. The presence of gemistocytes, vascular proliferation, and necrosis represent negative prognostic indicators, and the latter 2 histologic changes are diagnostic of high-grade astrocytomas.9,20–22
Findings in Touch, Squash, or Scrape Preparations.—The presence of process-forming cells is suggestive of a primary CNS neoplasm. Extreme fibrillarity may represent reactive astrocytosis.4(p39) Touch or squash preparations are also of value in evaluating specimens for the presence of macrophages. A macrophage-rich lesion is more consistent with a subacute infarct or demyelinative lesion, rather than a tumor.
Local extension, rapid growth, invasion of adjacent structures, and CNS spread via the ventricular system or subarachnoid space are often suggestive of, but not always diagnostic of, malignancy. Low-grade neoplasms, such as meningioma and pilocytic astrocytoma, may also exhibit this type of spread, but at a slower rate of growth than most malignant tumors. Malignant and atypical meningeal tumors often invade brain substance.24
Acknowledgments
Members of the College of American Pathologists Neuropathology Committee contributed to the development of this protocol.
References
Bibliography
This protocol was developed by the Cancer Committee of the College of American Pathologists and submitted for editorial review and publication. It represents the views of the Cancer Committee and is not the official policy of the College of American Pathologists.
Reprints: See Archives of Pathology & Laboratory Medicine Web site at www.cap.org.