Marek's disease virus (MDV) is an alpha-herpesvirus that causes rapid development of T-cell lymphomas in chickens. MDV-encoded vIL-8 is homologous to the cellular IL-8 gene, and its function in MDV pathogenesis has yet to be determined. Using overlapping cosmid clone–based technology, we have generated an MDV vIL-8 deletion mutant virus, rMd5/ΔvIL-8. In vivo experiments with this mutant virus demonstrated that deletion of vIL-8 results in attenuation of the virus and induction of significantly less gross tumor, both in viscera and nerves, when compared to the parental virus. Reintroduction of the vIL-8 gene in the genome of the mutant virus restored the virulence of the virus to the wild-type levels, indicating that vIL-8 plays a role in MDV-induced pathogenesis. In this study, we show that there is a significant difference in the reduction of B cells and activation of T cells in the spleen cells of chickens inoculated with parental rMd5 and vIL-8 deletion mutant virus. These results indicate that vIL-8 is involved in the early phase of pathogenesis, presumably by attracting target cells to the initial site of infection. In addition, protection studies with the vIL-8 mutant virus showed that this mildly virulent virus protects susceptible maternal antibody–positive viruses at a higher level than the commonly used serotype 1 CVI988 vaccine. These results confirm the potential of partially attenuated viruses as vaccines against very virulent plus strains and the usefulness of recombinant DNA technology to generate the next generation of MDV vaccines.

You do not currently have access to this content.