SUMMARY

Antibiotic resistance in avian bacterial pathogens is a common problem in the Bangladesh poultry industry. The aim of the present study was to provide information on the present status of antibiotic resistance patterns in avian pathogenic Escherichia coli in Bangladesh. Of 279 dead or sick poultry of different ages, 101 pathogenic E. coli strains isolated from broilers and layer hens with colibacillosis infections were screened to determine phenotypic expression of antimicrobial resistance against 13 antibiotics used in both veterinary and human medicine in Bangladesh. Of 101 pathogenic E. coli isolates, more than 55% were resistant to at least one or more of the tested compounds, and 36.6% of the isolates showed multiple–drug-resistant phenotypes. The most common resistances observed were against tetracycline (45.5%), trimethoprim-sulphamethoxazole (26.7%), nalidixic acid (25.7%), ampicillin (25.7%), and streptomycin (20.8%). Resistance to ciprofloxacin (12.9%), chlormaphenicol (8.9%), nitrofurantoin (2%), and gentamicin (2%) was also observed, and none of the isolates were resistant to tigecycline as well as extended spectrum beta-lactamase (ESBL) producers. One isolate was resistant to cefuroxime (1%), cefadroxil (1%), and mecillinam (1%) but was not an ESBL producer. Resistance rates, although significant in Bangladeshi isolates, were found to be lower than those reported for avian isolates from the Republic of Korea and clinical, avian, and environmental isolates from Bangladesh. The high level of antibiotic resistance in avian pathogens from Bangladesh is worrisome and indicates that widespread use of antibiotics as feed additives for growth promotion and disease prevention could have negative implications for human and animal health and the environment.

You do not currently have access to this content.