The present study was designed to analyze the histologic and cytologic changes of lymphocyte homing in noninfected and duck Tembusu virus (DTMUV)-infected duck spleens. At first, we investigated the noninfected structure that facilitates lymphocyte homing. Under light and electron microscopy, results showed that sheath capillaries were located in the white pulp of the spleen, and the endothelial cells of sheath capillaries were cuboidal in shape, which is a typical characteristic of high endothelial venules. To monitor the lymphocyte homing, 5,6-carboxy fluoresceindiacetate succinimidyl ester (CFSE)-labeled lymphocytes that were intravenously injected into noninfected ducks appeared in the periellipsoidal sheaths (PELS), which proved that lymphocytes can return to the spleen through sheath capillaries. Furthermore, proteoglycans (PGs) associated with homing factors were positively observed in sheath capillaries and PELS by colloidal iron staining. This suggests that PGs are associated with lymphocyte homing. The results of the DTMUV infection experiment showed that PELS appeared vacuolized at 3 dpi. The spleen tissue gradually recovered at 5 and 7 dpi. In addition, the lymphocytes increased around sheath capillaries, and the expression of PGs in sheath capillaries increased after virus infection. Meanwhile, the gaps between endothelial cells were enlarged, and the lymphocytes were mainly in the lumen and basement membrane. In conclusion, lymphocytes could recruit into the spleen through sheath capillaries, and PGs participated and promoted the lymphocyte homing, suggesting that the unique high endothelial capillaries favor lymphocyte homing, which promotes tissue repair and antigen clearance in the duck.

You do not currently have access to this content.