Hydropericardium syndrome (HPS) is caused by fowl adenovirus serotype 4 (FAdV-4). HPS has caused outbreaks in Chinese populations of broiler chickens since 2015. However, little is known about the molecular mechanisms underlying HPS. In this study, we used transcriptomic analysis to screen differentially expressed genes (DEGs) in the livers of FAdV-4-infected and non-infected chicks. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the gene network associated with the arginine metabolism pathway was enriched in livers infected by FAdV-4; ten genes were down-regulated and eight genes were up-regulated in these livers when compared to non-infected livers. The DEGs identified in livers were reanalyzed by real-time fluorescence quantitative polymerase chain reaction (qPCR); results indicated that the mRNA levels of the DEGs concurred with the data derived from KEGG analysis. Next, we used qPCR to detect the DEGs of the arginine metabolism pathway in a hepatocellular carcinoma cell line (LMH) after infection with FAdV-4 for 24 h; this also indicated that the mRNA levels of the DEGs concurred with that seen in the liver. We also used si-RNA oligonucleotides to knock down the mRNA levels of iNOS in LMH cells infected with FAdV-4 and found that the viral load of FAdV-4 was increased. Further investigation revealed that the addition of 240 μg/mL of arginine into the culture medium of LMH cells infected with FAdV-4 for 24 h led to a significant increase in the mRNA levels of iNOS but a significant reduction in the viral load of FAdV-4. Therefore, our data indicated that when broiler chickens become infected with FAdV-4, the arginine metabolic pathway in the liver becomes dysfunctional and the iNOS mRNA level decreases. This will add benefit to the replication of FAdV-4 but can be inhibited by the addition of an appropriate amount of arginine.

This content is only available as a PDF.
You do not currently have access to this content.