
48 Horizons  Spring 2014

Fuzzing

For an introduction to the motivations and 
concepts of fuzzing, please see the article by 
Baker1 on page 42 of this issue of Horizons. 
Additional background on fuzzing also has 
been reported previously.2

If you read the the article by Baker,1 you are 
probably convinced that fuzzing is a crucial part 
of any software development life cycle or 
validation and verification process. What now? 
How can you get started?

This article describes where the rubber meets 
the road, starting from making a plan and 
progressing through how discovered vulner-
abilities can be fixed. It provides an overview 
on mapping the attack surface of your target, 
prioritizing attack vectors, and creating a test 
plan. Specific recommendations on desirable 
fuzzer features also are described, as well as 
details on instrumentation, fuzzing roles, and 
how to help developers fix located vulnerabili-
ties. Note that some portions of this article 
were adapted from the Fuzz Testing Maturity 
Model (FTMM).3

Creating a Test Plan
Before firing up your fuzzer and trying to 
discover vulnerabilities in your target device, 
you need a plan.

Attack Surface Analysis

The first step in creating a test plan is to map 
out the available attack surface. Devices and 
networks are vulnerable where any type of 

software takes any type of input. Each place at 
which a piece of software takes input is an 
attack vector. The sum of all attack vectors is an 
attack surface.

Consider, for example, a typical infusion 
pump. Each place on the device that some  
piece of software accepts some kind of input, 
either through a network protocol or as a file, is 
an attack vector. Let’s assume the pump 
receives drug libraries over a network from a 
control computer.
• The drug libraries are likely described in an 

extensible markup language (XML) docu-
ment. The XML parser is a target, as is the 
custom code that deals with the content of the 
XML document.

• The XML document might be carried over 
HTTP. An HTTP server is responsible for 
parsing HTTP messages.

• TLS protocol handling is most likely sup-
ported through openSSL.

• TCP and IP protocols are supplied by the 
underlying operating system, likely a variant 
of Linux.

• The pump might have other services running 
as well, such as SSH.
Each attack vector represents some body of 

code—code that contains vulnerabilities. The 
attack surface of a network or system is the 
sum of the attack surfaces of its component 
devices.

When mapping the attack surface, don’t 
forget about nonnetwork inputs. For example, 

Practical Considerations 
Of Fuzzing: Generating 
Insight into Areas of Risk
Jonathan Knudsen

About the Author

Jonathan Knudsen 
is principal 
security engineer 
at Codenomicon 
in Raleigh, NC. 
E-mail: jonathan@
codenomicon.com

Each attack vector 
represents some body 
of code—code that 
contains vulnerabilities. 
The attack surface of a 
network or system is 
the sum of the attack 
surfaces of its 
component devices.

© Copyright AAMI 2014. Single user license only. Copying, networking, and distribution prohibited.



49Horizons  Spring 2014

Fuzzing

some devices might accept files as inputs.  
A mobile phone, for example, can display 
images and play audio files, both of which are 
attack vectors.

Tools for Attack Surface Analysis

Several simple tools can help in mapping an 
attack surface. The first is documentation. 
Specifications and technical documents about 
your target can be very helpful in understand-
ing which network protocols it uses and the 
types of files it might take as input.

If the target is based on Linux, the netstat 
command provides a useful list of listening 
network ports, which often is an excellent 
starting point in listing the attack surface.

For the “view from the outside,” running 
nmap from a different computer will provide a 
list of open ports, though its results might be 
foiled by firewalls or other techniques.4 The 
output of netstat run on the device itself is 
more accurate.

Assigning Priorities to Attack Vectors

Mapping the attack surface is useful, but 
putting it in order focuses the testing on the 
most dangerous attack vectors. The time and 
money spent on fuzzing always will be limited, 
so you want to be sure you are doing your most 
important testing first. The following criteria 
should be used when assigning priorities.
• Accessibility. How easy is it for an attacker to 

reach the vector? For example, some network 
equipment exposes protocols on a network 
interface that faces the public internet, while 
other protocols are usable only on a separate 
administrative network. The public-facing 
interface is much more likely to be attacked. 
Pay special attention to “trusted” interfaces 
that are allowed to pass through firewalls; 
these attack vectors will not be protected by 
a firewall or network perimeter and are criti-
cally important.

• Experience. Code that has been widely de-
ployed and thoroughly exercised is likely to 
be more robust than freshly written code or 
older code that has not been closely exam-
ined. The Linux kernel IPv4 implementation, 
for example, is so widely deployed, scruti-
nized, and tested that it is resilient in the face 
of malformed input. In effect, it has been 
fuzzed by the real world over many years.

• Authentication. Some vulnerabilities can be 
triggered only after successful authentication. 
From an attacker’s point of view, such vulner-
abilities require an additional step (obtaining 
login credentials) before they can be ex-
ploited. A higher priority should be placed on 
unauthenticated vulnerabilities.
After you finish prioritizing your attack 

vectors, you can choose which tools you will use 
for testing. The prioritized list is now a simple 
test plan.

Choose Your Weapons
In simplest terms, a fuzzer is a piece of 
software that tests another piece of software 
(i.e., the target). Writing a fuzzer is easy, 
whereas writing a great fuzzer is fiendishly 
difficult!

Five lines of Python or Ruby are enough to 
create a rudimentary random fuzzer, but such a 
fuzzer has crippling shortcomings. First, the 
outputs produced by the fuzzer resemble noise 
and generally will be ignored by target software, 
as they do not look like any type of valid input. 
Second, the fuzzer has no way of monitoring 
the target and therefore no way of knowing  
if a failure has occurred. Third, if something 
does go wrong in the target, how can the failure 
be reproduced?

The following features make a fuzzer  
highly useful.
• The fuzzer should be generational (or model 

based), meaning that the fuzzer itself has to-
tal knowledge of the protocol being tested. An 
HTTP protocol fuzzer, for example, should 
know about all possible HTTP messages and 
all message fields, as well as the rules govern-
ing how messages are exchanged among 
endpoints. A generational fuzzer creates test 
cases for every field of every message and sys-
tematically breaks every rule of the protocol 
being tested.

• A savvy test case engine iterates through the 
protocol model and creates the malformed 
inputs, or test cases, that will be used to 
exercise the target. Remember, fuzzing is an 
infinite space problem, so the test case engine 
must be smart about creating test cases that 
are likely to trigger failures in the target soft-
ware. Experience counts—the developers who 
create the test case engine, ideally, should 
have been testing and breaking software for 
many years.

The time and money 
spent on fuzzing 
always will be limited, 
so you want to be sure 
you are doing your 
most important testing 
first. 

© Copyright AAMI 2014. Single user license only. Copying, networking, and distribution prohibited.



50 Horizons  Spring 2014

Fuzzing

• High-quality test cases are not enough; a 
fuzzer must also include automation for 
delivering the test cases to the target. Depend-
ing on the complexity of the protocol or file 
format being tested, a generational fuzzer 
can easily create hundreds of thousands, even 
millions, of test cases.

• As the test cases are delivered to the target, 
the fuzzer uses instrumentation to detect 
whether a failure has occurred. This is one 
of the fundamental mechanisms of fuzz-
ing. Several instrumentation methods are 
discussed below.

• When outright failures or unusual behavior 
occur in a target, understanding what hap-
pened is critical. A great fuzzer keeps detailed 
records of its interactions with the target.

• Hand in hand with careful recordkeeping is 
the idea of repeatability. If your fuzzer deliv-
ers a test case that triggers a failure, deliver-
ing the same test case to reproduce the same 
failure should be straightforward. This is the 
key to effective remediation: when testers 
locate a vulnerability with a fuzzer, developers 
should be able to reproduce the same vulner-
ability, which makes determining the root 
cause and fixing the bug relatively easy.

• The fuzzer should be easy to use. If the  
learning curve is too steep, no one will want 
to use it.

Defining Failure
One reason that fuzzing is difficult is the many 
failure modes of software targets, including 
process crashes, kernel panics, unhandled 
exceptions, assertion failures, busy loops, and 
resource consumption.

Resource consumption usually refers to 
processing power, available memory, and 
available persistent storage, but the important 
resources are ultimately determined by the 
target and its environment. Monitoring 
resource consumption is a matter of defining 
baseline and critical threshold values for 
resource consumption, documenting these 
values in the test plan, and then comparing the 
resource values during testing with the defined 
thresholds.

Resource monitoring can be as simple as a 
human observing the output of the “top” utility 
on a Linux-based target or as complex as 
automated retrieval of SNMP values.

Detecting Failure
How does a fuzzer monitor the health of its 
target during testing? Software targets come in 
all shapes and sizes, so vital signs that make 
sense for a network router probably won’t make 
sense for an implantable medical device.

One of the simplest and best approaches is 
valid case instrumentation. After each test case 
is delivered to the target, the fuzzer delivers a 
valid message and looks for a valid response.  
If the target is still able to respond appropri-
ately, it is considered healthy. If the target 
cannot respond, the preceding test case is 
marked as a failure.

Another approach that works for certain 
classes of devices is SNMP instrumentation, in 
which vital signs are retrieved from the target 
and examined. Vital signs can include statistics 
about memory and processor consumption.  
Of course, this only works for devices that 
support SNMP.

More elaborate instrumentation can be 
performed using custom-developed scripts. The 
scripts can do anything you want to assess the 
health of the target, such as logging in, check-
ing network connections, examining processes, 
and interfacing to custom hardware.

In theory, fuzzing is a black box discipline, 
meaning that the fuzzer has no inside knowl-
edge of the target. The fuzzer interacts with the 
target through one of its attack vectors (i.e. an 
external interface).

In practice, the tester’s knowledge and access 
to the internals of the target will make fuzzing 
more effective. Examining log files or console 
output on the target, during or after testing, can 
provide valuable insights into the behavior of 
the target and its response to fuzzing. Inspect-
ing front panel lights or any other visible 
indications also can provide insight into the 
state of the target. Finally, setting up existing 
sessions (e.g., communication link between a 
glucose monitor and an insulin pump) might 
allow the tester to see an interruption if a 
failure occurs on the target.

Furthermore, running test targets in a 
debugger or using other developer tools can 
provide valuable information about the behav-
ior of the target during testing. Using developer 
tools, failed assertions and other conditions can 
be detected that might otherwise go unnoticed.

Monitoring resource 
consumption is a 
matter of defining 
baseline and critical 
threshold values for 
resource consumption, 
documenting these 
values in the test plan, 
and then comparing 
the resource values 
during testing with the 
defined thresholds.

© Copyright AAMI 2014. Single user license only. Copying, networking, and distribution prohibited.



51Horizons  Spring 2014

Fuzzing

Server, Client, and File Testing
The exact method of delivering fuzzing test 
cases to target software depends on how the 
target takes its input.

The simplest scenario is server testing, in 
which the target has the server role in a 
protocol conversation. The server simply listens 
for incoming messages from clients. Fuzzing a 
server is simple: the fuzzer acts like a client and 
repeatedly connects to the target, delivering a 
new fuzz test case each time. For example, a 
web server listens for incoming HTTP requests 
from a client. The fuzzer takes the role of client, 
in essence acting like a web browser.

Client testing is a little trickier. Here, the 
fuzzer acts like a server and listens for incom-
ing client messages. The client target must be 
coerced into repeatedly connecting to the 
fuzzer. For example, to test a web browser, the 
fuzzer acts like a web server, listening for 
incoming HTTP requests. Whenever one 
arrives, the fuzzer sends back a test case, a 
malformed HTTP response. Client testing 
frequently requires scripting, both to drive the 
testing forward and to detect errors in the target.

Some targets are transparent devices. For 
example, a firewall might examine network 
communications as they pass through the 
target. Fuzzing such a target usually involves 
sending test cases from one side of the target to 
a very robust endpoint on the other side.

Finally, target software might take input in 

the form of files. The target expects the files to 
have a certain structure. Fuzzing is a great way 
to challenge those expectations and probe for 
vulnerabilities. DICOM files and the images 
that can be contained in DICOM files are both 
excellent examples. Suppose you create 10,000 
fuzzed DICOM files. How do you get your 
target software to attempt to parse them? No 
tool can anticipate every possible delivery 
mechanism. Solutions usually involve some 
amount of scripting, just as with client testing.

Fidelity
Fuzzing is black box testing—all that is needed 
is a running target. That being said, the testing 
performed is specific to the target you use. 
Testing results can have sensitivity to how the 
target was built, how it is configured, and the 
environment in which it lives.

The same source code compiled with 
different build flags, or built for two different 
architectures, can exhibit different failures. 
Similarly, software configuration affects the 
visibility of vulnerabilities.

Ideally, fuzzing should happen on the same 
binaries that are used in production, in the 
same configuration, and in the same environ-
ment. This ideal is unattainable. The goal is to 
keep the configuration and environment as 
close as possible to a production setup.

Fuzz testing on debug builds, or builds with 
additional logging enabled, often makes finding 

Client testing is a  
little trickier. Here,  
the fuzzer acts like  
a server and listens  
for incoming client 
messages. 

Generational fuzzing is a highly effective method for locating vulnerabilities in software.

© Copyright AAMI 2014. Single user license only. Copying, networking, and distribution prohibited.



52 Horizons  Spring 2014

Fuzzing

and tracing vulnerabilities easier. However, 
these changes can alter the target’s behavior, 
either exposing vulnerabilities that would not 
be present in a production build or hiding 
vulnerabilities that would be present in a 
production build.

Also of note, testing performed by a builder 
likely will use a different configuration and 
environment from buyers. Strictly speaking, 
even if a builder has thoroughly tested a 
product, cautious buyers should do their own 
fuzzing for verification and validation.

Smaller devices present their own challenges. 
The limited resources of some embedded 
devices means that sending large volumes of 
test cases should be done by running the target 
code “off device” in an emulator on a desktop 
computer. This is a deliberate tradeoff—the 
target being tested is in a considerably different 
environment than production code, but the 
emulation enables substantially more testing.  
If most testing is done off device, smoke testing 
should be performed on the real device.

Fixing Vulnerabilities
Generational fuzzing is a highly effective 
technique for locating vulnerabilities, but the 
target software does not become more robust 
and more secure until vulnerabilities are fixed.

Vulnerabilities are fixed by developers, 
usually in a separate team from the people who 
are doing the fuzzing. A smooth remediation 
workflow ensures that testers can effectively 
communicate results to developers and that 
developers have all the information they need 
to fix vulnerabilities.

Here are several common approaches for 
fixing vulnerabilities:
• In the best case, a remediation workflow 

allows developers to see the same results 
and information as those seen by testers and 
allows developers to rerun the same test cases 
that caused failures in the target. This allows 
developers to reproduce the same failures, us-
ing debuggers and other tools, which should 
make it easy to fix the vulnerabilities.

• Another approach is to supply developers 
with packet captures or raw test case material 
that corresponds to target failures. This gives 
developers the anomalous input that caused 
a failure in the target, which should enable 
them to track down and fix the vulnerability.

• Finally, core dumps, log files, and other  
artifacts of failures can be useful in de-
bugging and fixing vulnerabilities. These 
artifacts, generated during testing, might be 
sufficient for developers to understand and 
eliminate vulnerabilities.
Fuzzing is likely to uncover large numbers of 

vulnerabilities in software that have not been 
fuzzed previously. A risk analysis that considers 
the probability of attack (more likely on a port 
exposed to the internet) and hazard level 
(patient safety versus temporary inconvenience) 
may be used to triage the vulnerabilities.

How Much Fuzzing Is Enough?
The rule of thumb with fuzzers is that more is 
almost always better. Fuzzing is an infinite 
space problem; different fuzzers are likely to 
find different vulnerabilities. Running more 
fuzzers increases your chances of finding  
more vulnerabilities.

In 2008, Miller5 performed fascinating 
research in which he intentionally introduced 
vulnerabilities into a piece of software, then ran 
multiple fuzzers to see how well the fuzzers 
located the vulnerabilities. Among his findings 
is a correlation between using more fuzzers 
and finding more vulnerabilities.

How do you know if you’ve done enough 
fuzzing? You want to be confident that the 
target software will not fail either accidentally 
or through deliberate attack. This is a surpris-
ingly difficult subject and will be covered in an 
upcoming article about fuzzing metrics. In 
general, two approaches are practical:
1. Compare yourself to your peers. If you are 

keeping pace with others in your community 
or industry, then your software should be 
roughly comparable in terms of robustness 
and security.

2. Use the FTMM,3 a tool-agnostic standard that 
maps fuzz testing metrics to specific maturity 
levels. This gives builder and buyer organiza-
tions a standard scale for communicating 
about fuzz testing.

Generational fuzzing is a highly effective technique for locating 
vulnerabilities, but the target software does not become more 
robust and more secure until vulnerabilities are fixed.

© Copyright AAMI 2014. Single user license only. Copying, networking, and distribution prohibited.



53Horizons  Spring 2014

Fuzzing

By knowing what 
vulnerabilities are 
present in their 
products, medical 
device manufacturers 
can better understand 
their risk profile, 
determine the most 
effective course of 
action to manage the 
inherent risk, and bring 
that risk to a level that 
is acceptable to all 
stakeholders.

Conclusion
Generational fuzzing is a highly effective 
method for locating vulnerabilities in software. 
Fuzzing has been embraced by fields as diverse 
as the telecommunication and automotive 
industries. More recently, the U.S. Food and 
Drug Administration adopted a generational 
fuzzer as the foundation of its newly created 
cybersecurity laboratory, in which medical 
devices will be tested with the aim of improving 
safety and reliability.6

Fuzzing works well as part of a software 
development life cycle or a product validation 
and verification process. Applying the princi-
ples described in this article can generate 
insight into areas of higher risk. Generational 
fuzzing can provide concrete testing results and 
the ability to improve the safety and security of 
your final product.

By knowing what vulnerabilities are present 
in their products, medical device manufactur-
ers can better understand their risk profile, 
determine the most effective course of action to 
manage the inherent risk, and bring that risk to 
a level that is acceptable to all stakeholders. n

References
1. Baker S. Fuzzing: A Solution Chosen by the 

FDA to Investigate Detection of Software 

Vulnerabilities. Horizons. 2014;Spring:42–47.

2. Knudsen J. Make Software Better with Fuzzing. 

Available at: www.codenomicon.com/news/

editorial/Make%20Software%20Better%20with 

%20Fuzzing.pdf. Accessed Feb. 21, 2014.

3. Codenomicon. Fuzz Testing Maturity Model. 

Available at: www.codenomicon.com/resources/

ftmm.shtml. Accessed Feb. 21, 2014.

4. Linux. Beginner’s Guide to Nmap. Available at: 

www.linux.com/learn/tutorials/290879-beginners-

guide-to-nmap. Accessed Feb. 21, 2014.

5. Miller C. Fuzz by Number: More Data About 

Fuzzing Than You Ever Wanted to Know. 

Available at: cansecwest.com/csw08/csw08-miller.

pdf. Accessed Feb. 21, 2014.

6. AAMI. FDA to Develop Cybersecurity Laboratory. 

Available at: www.aami.org/news/2013/072413_

FDA_Cybersecurity_Lab.html. Accessed  

Feb. 21, 2014.

© Copyright AAMI 2014. Single user license only. Copying, networking, and distribution prohibited.


