Theory predicts that gene flow will decrease phenotypic differences among populations. Correlational studies have in some cases documented constraining effects of gene flow on phenotypic divergence and/or have also provided evidence for local differentiation despite high gene flow. However, correlative studies are unable to evaluate how gene flow affects genetically based phenotypic divergence or the extent to which gene flow constrains adaptive divergence. Translocation experiments using Trinidadian guppies provided an opportunity to test the effects of new gene flow on quantitative traits in native recipient populations. We measured a suite of traits in guppies reared in common garden environments before and multiple generations following gene flow from guppies that originated from a different environment. We interpreted our results in light of a priori predictions based on evolutionary theory and extensive background information about guppies and our focal populations. Although we could not include a spatiotemporal control that would allow us to be certain that the observed changes were directly caused by gene flow, we found that post-gene flow populations showed genetically based shifts in most traits. Whether traits shifted in predicted adaptive directions or whether they became more or less similar to the source population depended on the trait and initial conditions of the population. Our study provided a rare opportunity to test how recent gene flow affects genetically based changes in traits with known adaptive significance, and our results attest to the complex interactions between gene flow and selection.

You do not currently have access to this content.