Abstract
This paper describes the results of an investigation of two commonly observed modes of failure of Alloy 600 in high temperature caustic environment, namely, intergranular stress corrosion cracking (IGSCC) and intergranular attack (IGA). Specimens are studied as C-rings under constant deflection, wires with and without any externally applied load, and as straining electrodes. The potential dependence of average crack propagation rate is established in a single test in which several C-rings are held at different potentials by using a modification of the static potential gradient method of Seys and Van Haute. SCC appears to be governed by a film rupture mechanism, and its propagation rate is significantly influenced by the electrochemical potential and associated surface film formation. The maximum crack propagation rate for C-rings and constant load specimens is very similar but much smaller than that calculated for a straining electrode at the same potential. IGA occurs over a wide range of potential, starting from a few multiples of ten millivolts cathodic to the corrosion potential up to the lower end of anodic potentials normally required for SCC. IGA seems to be rather independent of stress and is generally more pronounced in the crevice area under the nuts used in C-rings. Examination of several creviced coupons shows that outside the crevice, enrichment of iron and chromium occurs on the surface as the potential is raised anodically, whereas the Ni:Fe and Ni:Cr ratios remain relatively independent of potential within the crevice. It is believed that a better knowledge of the crevice chemistry and its mass transport characteristics will provide a clue to the origin and extent of IGA.