Stress corrosion cracking (SCC) susceptibility of austenitic EN 1.4301 (AISI 304, UNS S30400) stainless steel was studied as a function of electrode potential at T = 190°C in 15 g/kg NaOH + 150 g/kg Na2S containing caustic environment simulating heavy black liquors (HBL) of the pulp industry. Severe cracking was detected at the corrosion potential and at the cathodic potential of −0.11 VMo/MoS2 reference electrode. On the other hand, at anodic potentials of 0.03 VMo/MoS2 to 0.3 V Mo/MoS2 no cracking was observed. Thus, SCC of EN 1.4301 steel can potentially be mitigated in HBL environment by applying anodic protection. At the corrosion potential, selective dissolution of Fe and slight localized enrichment of Ni and Cr, as well as Na, S, and O, was observed. At anodic potentials, Fe was selectively dissolved and marked enrichment of both Ni and Cr, as well as Na, S, and O, took place in the corrosion product. The simultaneous enrichment of Ni and Cr in the corrosion product film was concluded to be the precondition to prevent SCC.
Skip Nav Destination
Article navigation
1 July 2015
CORROSION SCIENCE SECTION|
March 31 2015
Effect of Electrochemical Potential on Stress Corrosion Cracking Susceptibility of EN 1.4301 (AISI 304) Austenitic Stainless Steels in Simulated Hot Black Liquor
Timo Saario;
‡ Corresponding author. E-mail: [email protected].
Search for other works by this author on:
Thomas Ohligschläger
Thomas Ohligschläger
*******
Search for other works by this author on:
CORROSION (2015) 71 (7): 887–894.
Article history
Received:
December 16 2014
Revision Received:
March 30 2015
Accepted:
March 30 2015
Citation
Pekka Pohjanne, Mikko Vepsäläinen, Timo Saario, Konsta Sipilä, Jyrki Romu, Tapio Saukkonen, Hannu Hänninen, Mikko Heikkilä, Juha Koskiniemi, Carl-Gustav Berg, Martti Pulliainen, Isto Virtanen, Thomas Ohligschläger; Effect of Electrochemical Potential on Stress Corrosion Cracking Susceptibility of EN 1.4301 (AISI 304) Austenitic Stainless Steels in Simulated Hot Black Liquor. CORROSION 1 July 2015; 71 (7): 887–894. doi: https://doi.org/10.5006/1594
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Key Challenges for Internal Corrosion Modelling of Wet Gas Pipelines
N. Laycock, V. Metri, S. Rai, A. Sabhapondit, J. Hartog, S. Ghosh, A.M. Abdullah
Development of Accelerated Galvanic Corrosion Testing for Evaluating Heat Exchanger Corrosion Penetration Lifespan
Eun-Ha Park, Jeong-Min Lim, Geon-Il Kim, Yong-Won Kim, Jung-Gu Kim
Improving the Long—Term Protection of Buried Steel Tanks: Considering the Impact of Temperature and Extended Sacrificial Anodes
Mohammad Javad Shirshahi, Seyed Farshid Chini, Peyman Taheri, Abraham Mansouri
Corrosion prediction model for long-distance pipelines based on NLFE-NGO-ELM
Xingyu Du, Yujie Dai, Bailing Zheng, Xinqi Zhu
Identification of Synergistic Interactions in Green Corrosion Inhibitor Mixtures by Molecular Modeling
Carlos M. Menendez, Oleg A. Mazyar, Sunder Ramachandran, Tracey Jackson