This study aims to understand the correlation between the manufacturing process-induced plastic deformation, microstructure, and corrosion behavior of a 13Cr martensitic stainless steel tubing material (UNS S42000). Comparisons were made between the microstructure, crystallographic orientation, and corrosion performance of a texture-free, heat-treated sample and uniaxially tensioned samples to the elongations of 5% and 22%. Cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy were performed on all samples in aerated 3.5 wt% NaCl electrolyte at room temperature. Overall, the corrosion resistance of the samples was found to decrease with increasing deformation level. A more stable and higher corrosion potential and pitting potential values with a better stability of the passive film were derived for the nondeformed sample, whereas the 5% and 22% elongated samples exhibited lower corrosion and pitting potential values and were characterized by having a less stable passive layer. All samples consistently revealed micropit formation on the lath boundaries where a high concentration of chromium carbide precipitates was detected. Increasing the level of plastic strain in 13Cr stainless steel was found to enlarge the size of sensitized regions along the matrix/coarse chromium carbide precipitates interface, leading to more regions susceptible to initiation and propagation of pitting.
Skip Nav Destination
Close
Article navigation
1 December 2020
Research Article|
August 15 2020
Effect of Uniaxial Tension-Induced Plastic Strain on the Microstructure and Corrosion Behavior of 13Cr Martensitic Stainless Steel
Salar Salahi;
Salar Salahi
‡
*Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL, A1B 3X5 Canada.
‡Corresponding author. E-mail: ssalahi@mun.ca.
Search for other works by this author on:
Mostafa Kazemipour;
Mostafa Kazemipour
*Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL, A1B 3X5 Canada.
Search for other works by this author on:
Ali Nasiri
Ali Nasiri
**Department of Mechanical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada.
Search for other works by this author on:
CORROSION (2020) 76 (12): 1122–1135.
Citation
Salar Salahi, Mostafa Kazemipour, Ali Nasiri; Effect of Uniaxial Tension-Induced Plastic Strain on the Microstructure and Corrosion Behavior of 13Cr Martensitic Stainless Steel. CORROSION 1 December 2020; 76 (12): 1122–1135. doi: https://doi.org/10.5006/3516
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your Institution
60
Views
0
Citations
Citing articles via
Corrosion in Tinplate Cans Used for Food Storage.Part 1: EIS Results of BPA-Free Coating
Kuo-Hsiang Chang, Belinda Hurley, Melvin Pascall, Gerald Frankel
Editorial: Magnesium Corrosion Research Special Issue
Geraint Williams, Joey Kish
2020: A Year Like No Other
John Scully, Sammy Miles