It was found that copper is susceptible to the accelerated high-temperature corrosion induced by TeO2 at 650°C in air, which occurs at a constant rate. The calculated corrosion rate constant is 4.5 × 10−4 kg·m−2·s−1 and does not depend on the specific mass of tellurium oxide. Based on the results of the analysis of the microstructure (scanning electron microscopy/energy dispersive x-ray spectroscopy) and the phase composition (x-ray diffraction) of two formed corrosion layers, the phase distribution in the corrosion product has been ascertained. It was shown that during the corrosion process at 650°С, the inner corrosion layer containing Cu2O and Cu2Te and the outer corrosion layer mainly containing CuTe2O5 and Cu2O were formed. The inner layer provides a high copper ion conductivity due to Cu2Te, while the outer layer possesses a high oxygen ion conductivity due to the oxide melt. The mechanism of the overall corrosion process has been proposed.
Skip Nav Destination
Article navigation
1 February 2020
SCIENCE SECTION|
January 05 2020
High-Temperature Corrosion of Copper Induced by TeO2
Anton Klimashin
Anton Klimashin
‡
‡Corresponding author. E-mail: [email protected], [email protected]. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky pr. 49, Moscow 119991, Russian Federation.
Search for other works by this author on:
CORROSION (2020) 76 (2): 210–216.
Article history
Received:
June 13 2019
Revision Received:
January 05 2020
Accepted:
January 05 2020
Citation
Anton Klimashin; High-Temperature Corrosion of Copper Induced by TeO2. CORROSION 1 February 2020; 76 (2): 210–216. doi: https://doi.org/10.5006/3295
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Identification of Synergistic Interactions in Green Corrosion Inhibitor Mixtures by Molecular Modeling
Carlos M. Menendez, Oleg A. Mazyar, Sunder Ramachandran, Tracey Jackson
Resistance of the welded joint of X70 steel for main gas pipelines against corrosion-mechanical cracking under cathodic polarization in near-neutral pH solutions
Lyudmila Nyrkova, Larysa Goncharenko, Yuriy Lisovskiy, Leonid Faynberg, Valeriy Kostin
Effect of Non-Essential Alloying Elements and Solution pH on Corrosion Behavior of Al-Mg Alloys Fabricated by Cold Spray Deposition
Munsu Kim, Luke N. Brewer, Gregory W. Kubacki
Effects of Al content on the mechanical properties and corrosion behavior of Ni-Al coatings on 310S heat-resistant steel for CSP plants
Shipeng Xu, Yuehong Zheng, Faqi Zhan, Peiqing La