Hydrogen embrittlement of low alloys steels at three different strength levels (745 Mega Pascals [MPa], 904 MPa, and 1,166 MPa) were evaluated under cathodic polarization. Crack growth rate measurements were performed under constant stress intensity (K) conditions, as a function of applied K values as well as applied potential to characterize the behavior of the three different steels. At −1,050 mVSCE saturated calomel electrode (SCE), the threshold stress intensity (Kth) value increased from 44 MPa√m to 60 MPa√m as the yield strength decreased from 1,166 MPa to 745 MPa. The crack growth rate at 66 MPa√m and −1,050 mVSCE decreased from 3 × 10−5 mm/s to 4 × 10−8 mm/s as the yield strength decreased from 1,166 MPa to 745 MPa. For the 1,166 MPa steel at low values of K, the crack growth rate decreased by two orders of magnitude as the potential decreased from −1,000 mVSCE to −950 mVSCE. At higher values of K, the effect of potential on the crack growth rate was not as significant. The 745 MPa steel in general exhibited slow crack growth rate values (2 to 4 × 10−8 mm/s) over the range of K values and applied potentials in which it was evaluated. Water adsorption on fresh metal surfaces in the estimated crack tip chemistry was modeled using density functional theory. The variation in crack growth rate with applied potential at low and intermediate values of K correlated with the fractional coverage of water adsorption on the fresh metal surface. It is proposed that the water reduction reaction and the subsequent generation of hydrogen are the rate limiting steps in the slow subcritical crack growth rate processes for low alloy steels under the conditions evaluated. For the higher values of K, where the crack growth rate showed a weak dependence on applied potential, water reduction, and generation of hydrogen are likely not the rate limiting steps.

You do not currently have access to this content.