In this study, the corrosion behavior of laser-interference treated AA2024-T3 specimens, which are coated with a primer, is presented. The surface of as-received AA2024-T3 specimens were laser-interference structured by splitting the primary beam of a Q-switched Nd:YAG pulsed nanosecond laser into two beams and focusing them to the same spot on the specimen surface. After being stored in plastic cases for up to 70 d, without any additional cleaning, the specimens were spray painted with a chromate-containing epoxy primer, CA7233, compliant to MIL-PRF-23377 Type I Class C2 specification. The corrosion behavior of laser-interference specimens was assessed against that of specimens prepared by chromated conversion coating and sulfuric acid anodizing treatments. After the ASTM B117 corrosion exposure, it was found that the laser processed specimens exhibited only few blisters. On one hand, most specimens prepared at a laser fluence of 1.78 J/cm2, without any additional chemical cleaning, were found to develop one very small blister after only 96 h of exposure. However, the growth of these blisters was not significant even after 1,000 h of salt spray exposure. On the other hand, only a fraction of the specimens prepared at a laser fluence of 1.24 J/cm2 and acetone wiped right after the laser structuring were found to develop several tiny blisters after 790 h and longer exposure. Overall, it was found that the corrosion damage was minimized at a laser rastering speed of 4 mm/s, a condition for which only 33% of specimens developed very minor corrosion damage. The ASTM D1654 creepage ratings, which was used to evaluate the corrosion damage along the scribe lines, were found to be at least nine for all coated panels. These results indicate that the laser-interference technique with the additional acetone wiping has the potential to be further developed as a nonchemical surface preparation technique for chromate-containing epoxy primers coating systems.
Skip Nav Destination
Article navigation
1 May 2021
Research Article|
February 24 2021
Corrosion Behavior of Laser-Interference Structured AA2024 Coated with a Chromate-Containing Epoxy Primer
Jiheon Jun;
Jiheon Jun
*Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831.
Search for other works by this author on:
Adrian S. Sabau;
Adrian S. Sabau
‡
*Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831.
‡Corresponding author. E-mail: [email protected].
Search for other works by this author on:
Mike S. Stephens
Mike S. Stephens
*Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831.
Search for other works by this author on:
CORROSION (2021) 77 (5): 577–590.
Citation
Jiheon Jun, Adrian S. Sabau, Mike S. Stephens; Corrosion Behavior of Laser-Interference Structured AA2024 Coated with a Chromate-Containing Epoxy Primer. CORROSION 1 May 2021; 77 (5): 577–590. doi: https://doi.org/10.5006/3717
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Identification of Synergistic Interactions in Green Corrosion Inhibitor Mixtures by Molecular Modeling
Carlos M. Menendez, Oleg A. Mazyar, Sunder Ramachandran, Tracey Jackson
Resistance of the welded joint of X70 steel for main gas pipelines against corrosion-mechanical cracking under cathodic polarization in near-neutral pH solutions
Lyudmila Nyrkova, Larysa Goncharenko, Yuriy Lisovskiy, Leonid Faynberg, Valeriy Kostin
Effect of Non-Essential Alloying Elements and Solution pH on Corrosion Behavior of Al-Mg Alloys Fabricated by Cold Spray Deposition
Munsu Kim, Luke N. Brewer, Gregory W. Kubacki
Effects of Al content on the mechanical properties and corrosion behavior of Ni-Al coatings on 310S heat-resistant steel for CSP plants
Shipeng Xu, Yuehong Zheng, Faqi Zhan, Peiqing La