Three Al-Zn, Mg, and Mg/Al-rich primers (RPs) were evaluated for their ability to suppress intergranular corrosion (IGC) and intergranular stress corrosion cracking (IG-SCC) on highly sensitized aluminum alloy 5456-H116 by sacrificial anode-based cathodic prevention and chemical deposition effects. Tests were conducted in a 0.6 M NaCl solution under full immersion. These evaluations considered the ability of the primer to attain an intermediate open-circuit potential (OCP) such that the galvanic couple potential with bare 5456 resided outside a range of potentials where IGC prevention is observed. The ability of the primer to achieve OCP’s negative enough so that the 5456-H116 could be protected by sacrificial anode-based cathodic prevention and the ability to sustain this function over time were evaluated. The primers consisted of epoxy resins embedded with either (1) spherical Al-5 wt% Zn, (2) spherical Al-5 wt% Zn and spherical Mg, or (3) Mg flake pigments. A variety of electrochemical techniques evaluated the performance specified including OCP, electrochemical impedance spectroscopy, diagnostic cycle testing, as well as zero resistance ammeter tests with simultaneous pH measurement. Electrochemical cycle testing demonstrated that Al-5%Zn did not activate or provide cathodic prevention. Mg-RP had a suitable OCP for cathodic protection of 5456 but the time to primer activation as well as the activated potential both decreased upon utilization of Mg flake content in the primer. The pure Mg-RP activated quickly but ceased to achieve protective potentials after 1 to 11 cycles of DC/AC/OCP cycle testing. Cross-sectional analysis demonstrated that some flakes dissolved while uniform surface oxidation occurred on the remaining Mg flakes, which in combination led to impaired activation. The composite Mg plus Al/Zn-RP mixed primer maintained a suitably negative OCP over time, remained activated, dispensed high anodic charge, and remained an anode in zero-resistance ammeter testing. Chemical stability modeling and zero-resistance ammeter testing suggest that Mg corrosion elevates the pH which activates the Al-5 wt% Zn pigments, thereby providing a secondary pathway for sacrificial anode-based cathodic protection which supports the long-lasting cathodic protection achieved by the Al-5 wt% Zn/Mg primer. These analyses set a baseline for the consideration of Al-Zn/Mg-based coatings to establish effective cathodic protection on highly sensitized 5456-H116 in an aggressive alternate immersion environment and illustrate the merit of using Al/Mg-RP.
Skip Nav Destination
Article navigation
1 June 2023
Research Article|
March 21 2023
Mechanistic Insight into Al-Zn, Mg, and Al-Mg-Rich Primer Design for Enhanced Cathodic Prevention on Sensitized Al-Mg Alloys
M.E. McMahon;
M.E. McMahon
‡
*Center for Electrochemical Science and Engineering, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904.
‡Corresponding author. E-mail: mm5kn@virginia.edu.
Search for other works by this author on:
A. Korjenic;
A. Korjenic
*Center for Electrochemical Science and Engineering, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904.
Search for other works by this author on:
J.T. Burns;
J.T. Burns
*Center for Electrochemical Science and Engineering, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904.
Search for other works by this author on:
J.R. Scully
J.R. Scully
*Center for Electrochemical Science and Engineering, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904.
Search for other works by this author on:
CORROSION (2023) 79 (6): 647–664.
Citation
M.E. McMahon, A. Korjenic, J.T. Burns, J.R. Scully; Mechanistic Insight into Al-Zn, Mg, and Al-Mg-Rich Primer Design for Enhanced Cathodic Prevention on Sensitized Al-Mg Alloys. CORROSION 1 June 2023; 79 (6): 647–664. doi: https://doi.org/10.5006/4289
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your Institution
10
Views
Citing articles via
Viability of Cathodic Protection for Preventing Corrosion of SS316H in Molten LiF-NaF-KF
Krishna Moorthi Sankar, Preet Singh
Impact of fireside corrosion on creep rupture life and oxide scale structure of Super304H boiler tube
Xiaofeng Yang, Yaxin Xu, jintao lu, Dangdang Ying, Jinyang Huang, Wenya Li
Performance of a volatile corrosion inhibitor for mitigating corrosion under insulation
Yang Hou, Thunyaluk Pojtanabuntoeng, Mariano Iannuzzi, Mike Rajagopal