Grouted, post-tensioned (PTD) concrete systems are widely used to construct bridges, typically with an anticipated corrosion-free service life of 100+ y. However, the usage of inadequate grout materials and grouting practices in PTD concrete systems have caused unwanted air voids in ducts, leading to strand/grout/air interface, carbonation of exposed grout layer, and localized corrosion of strands (say, within about 10 y to 20 y). Re-grouting of voids as a tendon repair strategy has led to accelerated galvanic corrosion of the portion of strands at the interface between the carbonated base grout and repair grout with different chemistry, raising concerns and reluctance in re-grouting of voids in tendons. This work focused on understanding and quantifying the galvanic corrosion at the interface of carbonated base grout and repair grout in a re-grouted tendon. The theoretical analysis based on mixed potential theory estimated a galvanic current density of approximately 2 µA/cm2 and showed that the galvanic coupling can increase the corrosion current density of the prestressing steel in the base grout by about two-fold. The study on prestressed steel in simulated solutions estimated a galvanic current density of approximately 20 µA/cm2. Then, the study on prestressing steel in grouts and the analytical simulation estimated galvanic current densities around 1.5 µA/cm2 to 2 µA/cm2 at 95% external relative humidity (ERH) and 25°C. A model relating the galvanic current density in grouted systems as a function of ERH was developed, which showed an exponential increase in the galvanic corrosion with an increase in ERH. Also, a case study showed that if the tendon anchorage region experiences 95% ERH for about 20 y, sufficient strand corrosion could happen, and structural behavior can change from ductile to brittle nature, which could be a serious concern for structures in the coastal zone.
Skip Nav Destination
Article navigation
1 February 2024
Research Article|
November 30 2023
Galvanic Corrosion of Strands in Re-Grouted, Post-Tensioned Concrete Bridges
Karthikeyan Manickam;
Karthikeyan Manickam
*Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India, 600 036.
Search for other works by this author on:
Radhakrishna G. Pillai
Radhakrishna G. Pillai
‡
*Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India, 600 036.
‡Corresponding author. E-mail: [email protected].
Search for other works by this author on:
CORROSION (2024) 80 (2): 130–141.
Citation
Karthikeyan Manickam, Radhakrishna G. Pillai; Galvanic Corrosion of Strands in Re-Grouted, Post-Tensioned Concrete Bridges. CORROSION 1 February 2024; 80 (2): 130–141. doi: https://doi.org/10.5006/4461
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Surface Morphology and Remaining Geometric Parameters of Corroded Members on Bailey Truss
Mingyang Sun, Xiuhua Zhang, Hang Yin, Chen Jia, Changyong Liu
Effect of Cathodic Protection Design for Galvanic-Coupled Components on Localized Corrosion Resistance of Aluminum Heat Exchanger
Woo-Hyuk Lee, Gyeong-Ho Son, Geon-Il Kim, Eun-Ha Park, Jung-Gu Kim
Influence of inclusions on the pitting behavior of cast duplex stainless steels and patch weld layers
Zehui Liu, Ming Liu, Mengyuan Yang, Lining Xu, Jinxu Li, Lijie Qiao
Synthesis and properties of a new environmentally friendly bicyclic imidazoline quaternary ammonium salt as a corrosion inhibitor of carbon steel
Xiaoping Qin, Zhaolin Xie, Yilin Li, Lei Chen, Peng Tang, Xiaonan Liu, Haiwei Lu, Lijie Xing, Xiaoyan Wang
Pitting Behavior of a Super Ferritic Stainless Steel: Role of Primary and Secondary Precipitates after Heat Treatment
Rulei Lan, Longlin Lei, Xiheng Sun, Jin Li, Yiming Jiang, Yangting Sun