The high Mn steels are expected to become a novel steel for LNG (Liquefied Natural Gas) tank building because of their low cost, high strength and excellent low-temperature impact toughness. Up to now, it is still limited for studies on corrosion behavior of high Mn steel in a Cl- containing environment. We found that a strong Mn enrichment layers always exist in the outer rust layer, whereas a strong Al enrichment layers always exist in the inner rust layer. However, the Al and Cl simultaneously enrich in the same area. Although the corrosion resistance can be further improved by increasing Al content from 5.0 to 8.0 mass%, the improvement degree becomes weak and the pitting corrosion becomes serious due to the formation of δ-ferrite. There are two aspects to explain why Al improves corrosion resistance: 1) More Al addition can enhance the resistance of passive oxide. 2) The α-FeOOH content can be increased and the compactness of rust layer can be also enhanced by increasing Al content.
Skip Nav Destination
Article navigation
Research Article|
March 27 2023
Effect of Al addition on corrosion behavior of high Mn steels in a Cl− containing environment
Jun Chen
J Chen Sheyang, 110004,
China
Correspondence: Jun Chen, Email: cjer19841011@163.com
Search for other works by this author on:
CORROSION 4284:.
Article history
Received:
January 01 2023
Revision Received:
March 20 2023
Accepted:
March 27 2023
Citation
Ning Liu, Xing Yang, Jun Chen; Effect of Al addition on corrosion behavior of high Mn steels in a Cl− containing environment. CORROSION 2023; 4284:. doi: https://doi.org/10.5006/4284
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your Institution
1
Views
Citing articles via
Viability of Cathodic Protection for Preventing Corrosion of SS316H in Molten LiF-NaF-KF
Krishna Moorthi Sankar<span class='al-author-delim'>, </span>Preet Singh
Impact of fireside corrosion on creep rupture life and oxide scale structure of Super304H boiler tube
Xiaofeng Yang<span class='al-author-delim'>, </span>Yaxin Xu<span class='al-author-delim'>, </span>jintao lu<span class='al-author-delim'>, </span>Dangdang Ying<span class='al-author-delim'>, </span>Jinyang Huang<span class='al-author-delim'>, </span>Wenya Li
Optimizing Sour Gas Qualification Testing – Modeling the Effects of Temperature and Total Pressure on H<sub>2</sub>S Fugacity, Activity, and Solubility Coefficients
BRENT SHERAR<span class='al-author-delim'>, </span>Diana Miller<span class='al-author-delim'>, </span>Hui Li
Performance of a volatile corrosion inhibitor for mitigating corrosion under insulation
Yang Hou<span class='al-author-delim'>, </span>Thunyaluk Pojtanabuntoeng<span class='al-author-delim'>, </span>Mariano Iannuzzi<span class='al-author-delim'>, </span>Mike Rajagopal