Animal life history strategies evolve in response to a range of selective pressures, and often are tightly linked to sensory cues. Squamate reptiles possess well-developed chemosensory systems, which evolved early in their history and remain highly conserved. However, chemosensory abilities are secondarily reduced in primarily visual agamid and chameleonid lizards, which casts doubt on the ubiquity of reliance on chemosensory cues among squamates. Diurnal geckos from New Zealand avoid predators using visual crypsis and are primarily ambush foragers; reliance on visual cues may be a product of strong avian predation pressure and minimal influence from mammals and snakes for the past 80 my. We used New Zealand's diurnal geckos to test the role of local adaptation versus evolutionary conservatism in defining chemosensory systems. Specifically, we tested whether Marlborough green geckos, Naultinus manukanus, use chemoreception to detect and behaviorally respond to (1) food, (2) opposite-sex conspecifics, and (3) native reptilian predators (tuatara, Sphenodon punctatus). Chemosensory cues mediated gecko interactions with all three stimuli tested: (1) the scent of fruit induced greater exploratory behavior, (2) male geckos responded to scent of female conspecifics by increasing lingual sampling and activity, and (3) tuatara fecal cues (but not skin secretions) elicited characteristic antipredator freeze behavior in geckos. Neither the primarily visual life history strategies nor the reduced range of predators of New Zealand's diurnal geckos appears to have reduced their chemosensory abilities relative to other noniguanid squamate reptiles. Instead, our findings support the notion that chemosensory traits remain highly conserved.

You do not currently have access to this content.