Reintroduction of species at sites where populations have been extirpated has become a common technique in wildlife conservation. To track progress towards reintroduction success, effective postrelease monitoring is needed to document vital rates of individuals and the corresponding impact on population trajectories. We assessed growth and body size in Eastern Indigo Snakes (Drymarchon couperi) using a data set from multiple projects across the species’ distribution, including free-ranging wild snakes, snakes reared in captive-breeding programs, and snakes released at two reintroduction sites. We used these data to fit a von Bertalanffy growth model in a Bayesian framework to quantify differences in growth among three broad categories of snakes (wild, captive, and reintroduced), while accounting for measurement error across various projects. We also compared changes in body mass of captive-born individuals from four captive rearing facilities. Asymptotic snout–vent length across all groups was 185 cm (95% credible interval = 177–194 cm) for males and 157 cm (95% credible interval = 153–161 cm) for females. Reintroduced snakes had a higher growth coefficient than either captive or wild snakes (e.g., captive females = 1.20 [1.06–1.35] d−1; wild females = 1.22 [0.95–1.49] d−1; reintroduced females = 1.62 [1.21–2.05] d−1), indicating that current captive-breeding and rearing efforts for indigo snakes produce similar or faster growth trends compared to wild populations. Furthermore, daily changes in juvenile body weight relative to body size were similar in three of the four captive rearing facilities (mean for females at Orianne Center for Indigo Conservation = 0.57 [0.48–0.65]; Zoo Atlanta = 0.55 [0.37–0.72]; Welaka National Fish Hatchery = 0.55, [0.36–0.73]; Auburn University = 0.39 [0.21–0.58]). Long-term project success for indigo snake reintroductions will depend on continuing to implement best practices in an adaptive management framework.

You do not currently have access to this content.