We simulated the sales data for this case based on real weather data downloaded from the NOAA website for the state of Maine in the years 2015 and 2016 (available at http://www.noaa.gov/). We then wrote an SAS program to estimate sales by location-day for both 2015 and 2016 using the following regression, where we manually assigned each of the β coefficient values to capture realistic sales amounts for a given day:

$$\def\upalpha{\unicode[Times]{x3B1}}$$$$\def\upbeta{\unicode[Times]{x3B2}}$$$$\def\upgamma{\unicode[Times]{x3B3}}$$$$\def\updelta{\unicode[Times]{x3B4}}$$$$\def\upvarepsilon{\unicode[Times]{x3B5}}$$$$\def\upzeta{\unicode[Times]{x3B6}}$$$$\def\upeta{\unicode[Times]{x3B7}}$$$$\def\uptheta{\unicode[Times]{x3B8}}$$$$\def\upiota{\unicode[Times]{x3B9}}$$$$\def\upkappa{\unicode[Times]{x3BA}}$$$$\def\uplambda{\unicode[Times]{x3BB}}$$$$\def\upmu{\unicode[Times]{x3BC}}$$$$\def\upnu{\unicode[Times]{x3BD}}$$$$\def\upxi{\unicode[Times]{x3BE}}$$$$\def\upomicron{\unicode[Times]{x3BF}}$$$$\def\uppi{\unicode[Times]{x3C0}}$$$$\def\uprho{\unicode[Times]{x3C1}}$$$$\def\upsigma{\unicode[Times]{x3C3}}$$$$\def\uptau{\unicode[Times]{x3C4}}$$$$\def\upupsilon{\unicode[Times]{x3C5}}$$$$\def\upphi{\unicode[Times]{x3C6}}$$$$\def\upchi{\unicode[Times]{x3C7}}$$$$\def\uppsy{\unicode[Times]{x3C8}}$$$$\def\upomega{\unicode[Times]{x3C9}}$$$$\def\bialpha{\boldsymbol{\alpha}}$$$$\def\bibeta{\boldsymbol{\beta}}$$$$\def\bigamma{\boldsymbol{\gamma}}$$$$\def\bidelta{\boldsymbol{\delta}}$$$$\def\bivarepsilon{\boldsymbol{\varepsilon}}$$$$\def\bizeta{\boldsymbol{\zeta}}$$$$\def\bieta{\boldsymbol{\eta}}$$$$\def\bitheta{\boldsymbol{\theta}}$$$$\def\biiota{\boldsymbol{\iota}}$$$$\def\bikappa{\boldsymbol{\kappa}}$$$$\def\bilambda{\boldsymbol{\lambda}}$$$$\def\bimu{\boldsymbol{\mu}}$$$$\def\binu{\boldsymbol{\nu}}$$$$\def\bixi{\boldsymbol{\xi}}$$$$\def\biomicron{\boldsymbol{\micron}}$$$$\def\bipi{\boldsymbol{\pi}}$$$$\def\birho{\boldsymbol{\rho}}$$$$\def\bisigma{\boldsymbol{\sigma}}$$$$\def\bitau{\boldsymbol{\tau}}$$$$\def\biupsilon{\boldsymbol{\upsilon}}$$$$\def\biphi{\boldsymbol{\phi}}$$$$\def\bichi{\boldsymbol{\chi}}$$$$\def\bipsy{\boldsymbol{\psy}}$$$$\def\biomega{\boldsymbol{\omega}}$$$$\def\bupalpha{\bf{\alpha}}$$$$\def\bupbeta{\bf{\beta}}$$$$\def\bupgamma{\bf{\gamma}}$$$$\def\bupdelta{\bf{\delta}}$$$$\def\bupvarepsilon{\bf{\varepsilon}}$$$$\def\bupzeta{\bf{\zeta}}$$$$\def\bupeta{\bf{\eta}}$$$$\def\buptheta{\bf{\theta}}$$$$\def\bupiota{\bf{\iota}}$$$$\def\bupkappa{\bf{\kappa}}$$$$\def\buplambda{\bf{\lambda}}$$$$\def\bupmu{\bf{\mu}}$$$$\def\bupnu{\bf{\nu}}$$$$\def\bupxi{\bf{\xi}}$$$$\def\bupomicron{\bf{\micron}}$$$$\def\buppi{\bf{\pi}}$$$$\def\buprho{\bf{\rho}}$$$$\def\bupsigma{\bf{\sigma}}$$$$\def\buptau{\bf{\tau}}$$$$\def\bupupsilon{\bf{\upsilon}}$$$$\def\bupphi{\bf{\phi}}$$$$\def\bupchi{\bf{\chi}}$$$$\def\buppsy{\bf{\psy}}$$$$\def\bupomega{\bf{\omega}}$$$$\def\bGamma{\bf{\Gamma}}$$$$\def\bDelta{\bf{\Delta}}$$$$\def\bTheta{\bf{\Theta}}$$$$\def\bLambda{\bf{\Lambda}}$$$$\def\bXi{\bf{\Xi}}$$$$\def\bPi{\bf{\Pi}}$$$$\def\bSigma{\bf{\Sigma}}$$$$\def\bPhi{\bf{\Phi}}$$$$\def\bPsi{\bf{\Psi}}$$$$\def\bOmega{\bf{\Omega}}$${\eqalign{Sales = {\beta _1} * Store\;Type + {\beta _2} * Minimum\;Temperature \cr + {\beta _3} * High\;Snowfall * Store\;Type + \varepsilon .}}

Store Type is equal to one of three values: 1, 2, or 3. Store Type was assigned based on elevation levels for each city, which allows them to be roughly clustered together in the map included in Appendix A of the case materials. β1Store Type allows for separate groupings of revenues by...