Since 2006 RoHS requirements have required lead free solders to take the place of tin-lead solders in electronics. The problem is that in some environments the lead free solders are less reliable than the older tin-lead solders. One of the ways to solve this problem is to corner stake, edge bond or underfill the components. When considering what mitigation technique and material to use, the operating conditions must be characterized. The temperature range is important when selecting a material to use since the glass transition temperature (Tg) and coefficient of thermal expansion (CTE) are important properties. If improperly chosen, the mitigation material can cause more failures than an unmitigated component.

This study focused on 208 I/O BGAs on a 4 layer FR4 board. There were three solders tested; two lead free (SAC305 and SN100C) and one leaded (SnPb). Three mitigation techniques were tested: corner staking, edge bonding, and underfilling. Each of these techniques had two mitigation materials tested. One material was reworkable and the other was not. The boards were subjected to mechanical shock testing and sinusoidal vibration testing until failure.

The results of the testing show that no one mitigation technique is best for all of the conditions tested. The same is true for the mitigation material. The best choice of mitigation technique and material is application dependent.

This content is only available as a PDF.
You do not currently have access to this content.