The desirable properties exhibited in some nonlinear dynamical systems have many potential uses. These properties include sensitivity to initial conditions, wide bandwidth, and long-term aperiodicity, which lend themselves to applications such as random number generation, communication and audio ranging systems. Chaotic systems can be realized in electronics by using inexpensive and readily available parts. Many of these systems have been verified in electronics using nonpermanent prototyping at very low frequencies; however, this restricts the range of potential applications. In particular, random number generation (RNG) benefits from an increase in operation frequency, since it is proportional to the amount of bits that can be produced per second. This work looks specifically at the nonlinear element in the chaotic system and evaluates its frequency limitations in electronics. In practice, many of nonlinearities are difficult to implement in high speed electronics. In addition to this restriction, the use of complex feedback paths and large inductors prevents the miniaturization that is desirable for implementing chaotic circuits in other electronic systems. By carefully analyzing the fundamental dynamics that govern the chaotic system, these problems can be addressed. Presented in this work is the design and realization of a high frequency chaotic oscillator that exhibits complex and rich dynamics while using a compact footprint and low power consumption.
Skip Nav Destination
Article navigation
Research Article|
January 01 2017
A Compact and Low Power Realization of a High Frequency Chaotic Oscillator
Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) (2017) 2017 (DPC): 1–27.
Citation
R. Chase Harrison, Benjamin K. Rhea, Frank T. Werner, Robert N. Dean; A Compact and Low Power Realization of a High Frequency Chaotic Oscillator. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 1 January 2017; 2017 (DPC): 1–27. doi: https://doi.org/10.4071/2017DPC-TP4_Presentation2
Download citation file:

Citing articles via
Silicon Carbide Junction Field Effect Transistor Compact Model for Extreme Environment Integrated Circuit Design
S. Perez, A.M. Francis, J. Holmes, T. Vrotsos
Smart Ultrasonic Welding – A Versatile Interconnection Technology for Power Electronics Packaging
Matthias Hunstig, Sebastian Holtkämper, Lars Helmich, Michael Brökelmann
A High Temperature SOI-CMOS Chipset Focusing Sensor Electronics for Operating Temperatures up to 300 °C
Holger Kappert, Sebastian Braun, Norbert Kordas, Andre Kosfeld, Alexander Utz, Constanze Weber, Olaf Rämer, Malte Spanier, Martin Ihle, Steffen Ziesche, Rainer Kokozinski
Bridging the Gap: A Qualitative Study on the Viability and Performance of Metalized Polyetherimide (PEI) Film Capacitors at High Temperature
Daniel Tyler, Svetlana Lukich, Raul DePersia, Chase Guilbeau, Mark Carter