Abstract

Ultrasonic wire bonding is an indispensable process in the industrial manufacturing of semiconductor devices. Copper wire is increasingly replacing the well-established aluminium wire because of its superior electrical, thermal and mechanical properties. Copper wire processes differ significantly from aluminium processes and are more sensitive to disturbances, which reduces the range of parameter values suitable for a stable process. Disturbances can be compensated by an adaption of process parameters, but finding suitable parameters manually is difficult and time-consuming. This paper presents a physical model of the ultrasonic wire bonding process including the friction contact between tool and wire. This model yields novel insights into the process. A prototype of a multi-objective optimizing bonding machine (MOBM) is presented. It uses multi-objective optimization, based on the complete process model, to automatically select the best operating point as a compromise of concurrent objectives.

You do not currently have access to this content.