Rocker shoes are commonly prescribed to healthy and pathologic populations to decrease stress on the lower limbs. An optimal rocker shoe design must consider both toe and heel rockers. Heel rockers are as effective as toe rockers in relieving foot plantar pressures. However, most studies have focused on the position of toe rockers. The aim of this study was to assess the effect of different heel rocker apex placements on lower-limb kinetics and kinematics.


Eighteen healthy females participated in this study. Three pairs of rocker shoes with rocker apex positions anterior to the medial malleolus (shoe A), at the medial malleolus (shoe B), and posterior to the medial malleolus (shoe C) were fabricated and then compared with a flat shoe (shoe D). Kinetic and kinematic data were collected, and lower-extremity joint ranges of motion and moments were calculated.


Ankle range of motion was increased by shoe C (P = .04) during initial contact and by shoe A (P = .02) during single-limb support. Peak knee moment was significantly larger for shoes A and B (P < .05) during single-limb support.


Results showed that forward and backward shifting of the heel rocker apex could change the knee moment and ankle joint range of motion in the stance phase of gait. Therefore, placement of the heel rocker in a rocker-bottom shoe can be manipulated to promote the desired lower-limb motion, at least in healthy individuals.

You do not currently have access to this content.