In vitro biomechanical testing of the human foot often involves the use of fresh frozen cadaveric specimens to investigate interventions that would be detrimental to human subjects. The Thiel method is an alternative embalming technique that maintains soft-tissue consistency similar to that of living tissue. However, its suitability for biomechanical testing is unknown. Thus, the aim of this study was to determine whether Thiel-embalmed foot specimens exhibit kinematic and kinetic biomechanical properties similar to those of fresh frozen specimens.


An observational study design was conducted at a university biomechanics laboratory. Three cadavers had both limbs amputated, with one being fresh frozen and the other preserved by Thiel's embalming. Each foot was tested while undergoing plantarflexion and dorsiflexion in three states: unloaded and under loads of 10 and 20 kg. Their segment kinematics and foot pressure mapping were assessed simultaneously.


No statistically significant differences were detected between fresh frozen and Thiel-embalmed sample pairs regarding kinematics and kinetics.


These findings highlight similar kinematic and kinetic properties between fresh frozen and Thiel-embalmed foot specimens, thus possibly enabling these specimens to be interchanged due to the latter specimens' advantage of delayed decomposition. This can open innovative opportunities for the use of these specimens in applications related to the investigation of dynamic foot function in research and education.

You do not currently have access to this content.