In 2010, 8.6 million children were treated for unintentional injuries in American emergency departments. Child engagement in sports and recreation offers many health benefits but also exposure to injury risks. In this analysis, we consider possible developmental risk factors in a review of age, sex, and incidence of 39 sport and recreational injuries.
To assess (1) how the incidence of 39 sport and recreational injuries changed through each year of child and adolescent development, ages 1 to 18 years, and (2) sex differences.
Descriptive epidemiology study.
Emergency department visits across the United States, as reported in the 2001–2008 National Electronic Injury Surveillance System database.
Data represent population-wide emergency department visits in the United States.
Pediatric sport- and recreation-related injuries requiring treatment in hospital emergency departments.
Almost 37 pediatric sport or recreational injuries are treated hourly in the United States. The incidence of sport- and recreation-related injuries peaks at widely different ages. Team-sport injuries tend to peak in the middle teen years, playground injuries peak in the early elementary ages and then drop off slowly, and bicycling injuries peak in the preteen years but are a common cause of injury throughout childhood and adolescence. Bowling injuries peaked at the earliest age (4 years), and injuries linked to camping and personal watercraft peaked at the oldest age (18 years). The 5 most common causes of sport and recreational injuries across development, in order, were basketball, football, bicycling, playgrounds, and soccer. Sex disparities were common in the incidence of pediatric sport and recreational injuries.
Both biological and sociocultural factors likely influence the developmental aspects of pediatric sport and recreational injury risk. Biologically, changes in perception, cognition, and motor control might influence injury risk. Socioculturally, decisions must be made about which sport and recreational activities to engage in and how much risk taking occurs while engaging in those activities. Understanding the developmental aspects of injury data trends allows preventionists to target education at specific groups.
- •
Pediatric sport and recreational injuries are a significant public health concern in the United States.
- •
The injury risk varies across child development for particular types of sport and recreational injuries.
- •
Sex disparities were common in the incidence of pediatric sport and recreational injuries.
The magnitude of fatal and nonfatal, unintentional, pediatric injuries represents an increasingly recognized public health problem in the United States and around the world. Statistics from the Centers for Disease Control and Prevention indicate that 7712 US children died of unintentional injuries in 2009, or more than 21 children per day.1 Furthermore, more than 8.6 million children were treated for injuries in emergency departments (EDs) in 2010, representing 23 596 children treated per day, 983 per hour, and 16 per minute.1 Cost estimates resulting from injuries to American children, age 0 to 14 years, in 2000, exceeded $50 billion.2
Traditionally, injury researchers use 5-year age spans (eg, ages 0–4, 5–9, 10–14) to examine injury incidence during childhood. However, such a broad analysis of age groups lacks the precision that might be needed to understand fully how child and adolescent development interacts with the process of injury events and, subsequently, to design age-appropriate injury-prevention strategies. Agran et al3 illustrated this problem using data from the 1997 California Office of Statewide Health Planning and Development database. Analyzing injury hospitalization and death data, they showed an elevated poisoning risk among 1-year-olds (rate = 83 per 100 000) that was not well represented by the 0 to 4-year age range and that was far higher than the rate among 4-year-olds (rate = 14 per 100 000).3 This pattern was attributed to 1-year-olds being newly mobile and developmentally prone to explore, discover, and ingest potentially poisonous household items when unsupervised. By age 4, children may have developed the cognitive skills to avoid potentially poisonous household items.
Our analysis was conducted using data from the National Electronic Injury Surveillance System (NEISS),4 a database of injuries treated at hospital EDs across the United States. We considered all sport and recreational injuries reported during an 8-year time span (2001–2008) among children ages 1 to 18 years. Our analysis was descriptive and focused on changes in injury incidence through child and adolescent development. Sex differences were considered as a secondary topic of interest.
METHODS
Data Source
Data for this study were taken from the 2001–2008 NEISS data sets, which are collected by the United States Consumer Product Safety Commission and the National Center for Injury Prevention and Control from a sample of hospital EDs across the United States. Specifically, the NEISS data were collected from about 100 hospitals, ranging from small to large, and including children's hospitals. Patients treated at the sampled hospitals are representative of national injury patterns involving consumer products.4,5 Data are collected daily, 365 d/y, by hospital staff, using a standardized coding manual. Only initial hospital visits by patients are included in the data set. As detailed elsewhere,4,5 numerous safeguards flag and correct invalid coding or data entries. Secondary data analysis was approved by the institutional review board at the University of Alabama at Birmingham.
To adjust for selective sampling, the NEISS data set assigns sample weights to data points, so the data set estimates annual, population-based ED visits nationwide. Because we analyzed data across 8 years of the survey, sample weights were divided by 8 for analytic purposes, preserving the pattern of estimated, annual ED visits nationwide for our analyses. Therefore, frequencies reported in this article use sample weights and represent the number of annual ED visits by the US population during the 8-year period of 2001–2008.4
Variables
Patient age and sex were culled from medical records. Injury data from all sport- and recreation-related injuries in the NEISS data set incurred by children ages 1 to 18 years were included in the analysis. We omitted injuries to infants younger than 12 months because such infants are typically nonmobile, and injuries typically result from supervisor behavior and decisions rather than child behavior or decisions. We were interested in pediatric injuries only and, therefore, omitted injuries to individuals older than 18 years. Injury cases were classified into mutually exclusive categories of sport or recreational activities based on a combination of the consumer products involved (eg, scooter, skateboard, snow skis) and the medical description of the incident.
Analytic Plan
Our data analysis was descriptive. We first prepared a descriptive table displaying injuries across the 39 sport and recreation activities and the 18 years of age. Next, we examined the 5 most common causes of sport and recreational injuries for each year of age development. Last, we assessed the percentage of boys' and girls' injuries for each of the 39 sport and recreational injury types.
RESULTS
During the years 2001–2008, an estimated 2 566 178 children, ages 1 to 18 years, were seen in US EDs for sport or recreation injuries. That divides into about 320 722 injuries per year or about 37 pediatric sport and recreational injuries treated per hour in the United States.
The estimated national annual injuries by sport and recreational activity and by age are displayed in Table 1. The table is organized by frequency of injury, with the most frequent causes appearing first. Peak age of injury incidence for each activity is marked in bold. Bowling caused the most injuries to children at the youngest age (4 years), and camping and personal watercraft, the oldest (18 years). The years with the most peaks of sport and recreational activity injuries were the middle teenage years, with 6 activities peaking in frequency at age 14 years and 9 activities peaking at age 15 years.
Total injuries varied widely across years of age. In general, younger children incurred the fewest sport and recreational injuries, and injury counts increased steadily into the early teen years, with the overall peak occurring at 14 years. The decline in the later teen years was modest until age 18 years, when the rate plummeted to a rate comparable with age 6 years. Total injuries also varied widely across sport and recreational activities. Billiards, camping, and personal watercraft use all resulted in fewer than 200 injuries per year nationally, whereas basketball, football (American style), and bicycling each caused more than 300 000 injuries.
The 5 leading sport- and recreation-related injury causes at each age of development are shown in Table 2. In general, playground and bicycle injuries were the most common in the earlier ages of development, whereas team sports—especially basketball, football, and soccer—emerged as activities causing more injuries in later childhood and adolescent years.
The 5 leading sport- and recreation-related injury causes overall, throughout development—basketball, football, bicycling, playgrounds, and soccer are presented in the Figure. The 3 team sports—basketball, football, and soccer—showed a relatively similar trajectory: few injuries in early childhood, followed by a sharp increase in injuries around age 8 or 9 years, peaking in the middle teenage years, and then falling off rather sharply at 17 to 18 years. Basketball and football followed remarkably parallel trajectories, whereas soccer had a more muted peak. The 2 other most common causes of pediatric injury—playgrounds and bicycling—possessed very different pathways across development. Playground injuries peaked in the early elementary school years and then showed a slow but consistent drop-off into very low numbers during the teenage years. Bicycling injuries peaked in the preteen years but were fairly common throughout most of childhood.
Information on the secondary question of interest, sex disparities in sport and recreational injuries, is offered in Table 3. Wide disparities emerged, with boys incurring more than 85% of baseball, football, moped, and nonpowder gun injuries, and girls incurring more than 85% of gymnastics, cheerleading, and softball injuries. Sex disparities were absent in just a few sport and recreational activities: amusement attractions, ice skating, playgrounds and playground equipment, racket sports, soccer, track and field, and trampoline each had an injury incidence no greater than 55% for 1 sex.
DISCUSSION
Sport and recreational activities are generally safe, enjoyable, and healthy. Millions of youth in the United States and worldwide engage in sports and recreation daily without injury. Injuries, however, do occur and can dramatically affect physical and mental health. One critical aspect of preventing pediatric sport and recreational injuries is understanding how the injury risk varies across child and adolescent development. Such an understanding will help aid injury-prevention efforts by allowing experts to focus on specific causes and age groups.
Our results begin to address that need. We report the number of injuries incurred in the United States during an 8-year period, across 18 years of age, and for 39 sport and recreational activities. Examining just 1 year of age or just 1 type of sport or recreational activity offers substantial information. Rather than arduously reviewing the detailed information available in our tables, we discuss some of the more surprising data patterns and then address factors that may explain these findings.
Several individual sport and recreational activities showed injury patterns that surprised us. We did not anticipate, for example, that the largest number of bowling injuries might be incurred by young children—those 4 and 5 years old. We also did not expect so many—several hundred—toddlers (1–3 years old) to be injured by activities designed primarily for adolescents and adults, such as all-terrain vehicles, snowmobiles, fishing, and mopeds and minibikes. Also surprising was that exercising and exercise equipment was among the top 5 causes of injuries for 3 age categories: 1-year-olds, 2-year-olds, and 18-year-olds and that bicycle injuries persisted throughout all of child and adolescent development, placing it among the top 5 causes of sport and recreational injuries from ages 1 to 18 years.
Other results were expected. Playground and trampoline injuries were most prominent throughout early and middle childhood but were then replaced in prominence by team sports, with baseball as a top 5 injury cause at 7 years and team sports accounting for 4 of the top 5 causes of sport and recreational injuries from ages 11 to 18 years (baseball, basketball, football, and soccer). Interestingly, despite US football's reputation as a physical contact sport, basketball caused more injuries to US youth than did football, which may be partly due to exposure issues. Very few girls play competitive football in the United States, but both boys and girls play basketball, both competitively and recreationally. More youth may also be engaged in recreational (playground, driveway, or “pick-up”) basketball nationwide than in football.
Our findings concerning the sex of injured children were largely as expected. Boys tended to have more injuries than girls in most categories, as has been reported in the broader child-injury literature.1 The sports that had the higher numbers of female injuries were those that are more prototypically engaged in by US girls—softball, gymnastics and cheerleading, horseback riding, and volleyball.
How might the findings be explained? Caution must be exercised in interpreting causality from our descriptive data analysis, but biological development likely plays some role. Perceptual, cognitive, and motor skills develop throughout childhood and may affect how youth engage in activities that require balance, coordination, decision-making, and other developmental skills. Misjudgments, missteps, and miscalculations—often developmentally driven—can result in injury.6
Sociocultural factors are also likely relevant. To state the obvious, children are more likely to be injured in the sport and recreational activities in which they engage. We were unable to adjust our analysis for exposure,7,8 but one would expect more pediatric basketball injuries than pediatric bowling injuries based on the assumption that US children spend more time playing basketball than they do bowling. Sociocultural factors also may play more subtle roles. Increased independence from supervision and a developmental tendency toward impulsive risk taking could contribute to the high rate of injuries in “adventure” activities such as tobogganing and sledding, scooters, skateboards, and skates in the early and middle adolescent years.
The role of sociocultural factors may be increasingly important if national calls to increase physical activity among youth are successful.9,10 That is, we might expect increased sports and recreational injuries as youth are increasingly exposed to risk. That risk may vary through child development, and identifying data trends will assist with injury-prevention efforts.
Like all research using large, archival data sets, such as the NEISS, this study has strengths and limitations. Strengths include the size and scope of the data set and its ability to address a wide range of injuries across ages and sport and recreational activities. However, we also cite several limitations. First, we were unable to control for exposure to sport or recreational activities or injury situations. Second, we lacked detail about specific injury events, including antecedents and consequences of individual injury events, the particular types of injuries caused by each sport or recreational activity, or the severity of individual injuries. For example, exercise equipment injuries to young children were likely caused by toddlers catching their fingers in equipment that adults were using, rather than being injured while using the equipment themselves.11,12 Third, an understanding of the severity of injuries would be particularly helpful to future researchers. Swimming injuries may range, for example, from allergic rashes to life-altering spinal-cord injuries. Although there were slightly more basketball than football injuries overall, football injuries may be more severe (eg, head injuries, fractures) than basketball injuries (eg, sprains). Fourth, we relied on injury reports from EDs only and did not include injuries that still affected children and their parents but were treated in urgent care settings, primary caregiver offices, school athletic trainer or nurse offices, or elsewhere. Fifth, we lacked information about the geographic location where the injury occurred or where the patients lived. Future investigators might consider differences between sport and recreational injury incidence among rural, urban, and suburban patients.
In conclusion, we found that almost 37 children experienced a medically treated sport or recreational injury in the United States every hour. Team sports (eg, basketball, football, soccer), plus bicycling and playgrounds, were the most common causes of pediatric sport and recreational injuries, but injuries were caused by a range of activities. Injury incidences varied across child and adolescent development, with different activities peaking in incidence at different ages.