Objective: The surface roughness of various orthodontic materials could affect biofilm formation and friction. The purpose of this study was to examine the surface roughness and chemical composition of the slots and wings of several ceramic self-ligating brackets. Study design: Four types of ceramic self-ligating brackets were separated into experimental groups (DC, EC, IC, and QK) while a metal self-ligating bracket (EM) was used as the control group. Atomic force microscopy and energy-dispersive x-ray spectroscope were used to examine the surface roughness and chemical composition of each bracket slot and wing. Results: The control group was made of ferrum and chrome while all the experimental groups were comprised of aluminum and oxide. There was a statistically significant difference in the roughness average (Sa) among the various self-ligating brackets (p< 0.001 in slots and p<0.01 in the wing). The slots in the EC group had the lowest Sa, followed by the DC, IC, control, and QK groups. The wings in the IC group had the lowest Sa, followed by the EC, DC, control, and QK groups. Conclusions: There is a significant difference in the surface roughness of the slots and wings among several types of ceramic self-ligating brackets.

This content is only available as a PDF.
You do not currently have access to this content.