Survivorship, developmental period, and adult longevity of the fruit fly, Drosophila melanogaster Meigen (Diptera: Drosophilidae), exposed to penicillin G, a beta-lactam antibiotic, was determined in laboratory testing. In the study, neonate larvae were placed and reared on dietary antibiotics at concentrations of 100, 200, 400, or 800 mg/L. All penicillin concentrations significantly decreased survivorship in an inverse relationship with third instars, pupae, and adults. Larvae fed on control diets of 0 mg/L of penicillin had a survival level of 91.00 ± 3.27% to third instar and pupation, and 89.00 ± 4.09% to adult emergence. Feeding on a diet containing the highest concentration of penicillin (800 mg/L) significantly decreased survivorship to third instar to 11.00 ± 2.59% (χ2 = 128.051; df = 1; P = 0.0001) and to pupation (χ2 = 131.233; df = 1; P = 0.0001) and adult emergence to approximately 10.00 ± 1.00% (χ2 = 124.832; df = 1; P = 0.0001). The highest concentration of dietary penicillin (800 mg/L) also significantly prolonged developmental time from neonate to third instars by 1.5 d (F = 17.229; df = 4; P = 0.0001) and from neonate to adult emergence by 3 d (F = 2.004; df = 4; P = 0.032). Compared to the control group, adult longevity was significantly reduced by the antibiotic in a dose-related manner. The use of this antibiotic in insect artificial rearing enables an extensive search of possible insecticidal action of penicillin with high dietary levels for agricultural purposes.

You do not currently have access to this content.