ABSTRACT

Auditors' discussions in audit plan brainstorming sessions provide valuable knowledge on how audit engagement teams evaluate information, identify and assess risks, and make audit decisions. Collected expertise and experience from experienced auditors can be used as decision support for future audit plan engagements. With the help of Natural Language Processing (NLP) techniques, this paper proposes an intelligent NLP-based audit plan knowledge discovery system (APKDS) that can collect and extract important contents from audit brainstorming discussions and transfer the extracted contents into an audit knowledge base for future use.

You do not currently have access to this content.