High pressure processing (HPP) can inactivate pathogens and retain fruit qualities. Elevated HPP pressure or time increases virus inactivation, but the effect of temperature is not consistently observed for norovirus and hepatitis A virus. In the present study, the effectiveness of HPP holding temperatures (<40°C) and pressures were evaluated for inactivating surrogates (murine norovirus [MNV] and MS2 coliphage) in pomegranate and strawberry juices and strawberry puree using a 24-liter HPP system. The holding temperature was established by setting the HPP initial temperature via pretrials. All trials were able to arrive at the designated holding pressure and holding temperature simultaneously. MNV inactivation in juices was conducted at 300 MPa for 3 min with various holding temperatures (10 to 30°C). A regression equation was derived, Y = −0.08 × X + 2.6 log PFU, R2 = 0.96, where Y is the log reduction and X is the holding temperature. The equation was used to predict a 2.6-log reduction in juices at 0°C holding temperature and indicated that MNV inactivation was inversely proportional to temperature increase. MNV survival during HPP did not differ significantly in pomegranate and strawberry juices. However, MS2 coliphage inactivation was greater as the holding temperature increased (from 15 to 38°C) at 600 MPa for 3 min. The increased inactivation trend is presumably similar to that for hepatitis A virus, but the holding temperature was not correlated with the reduction of HPP-resistant MS2 in strawberry puree. When the HPP holding pressure was evaluated independently in strawberry puree, a 5-log reduction of MNV was predicted through regression analysis at the holding pressure of 424 MPa for 3 min at 20°C. These parameters should inactivate >5 log PFU of MNV in juices, based upon a greater inactivation in berry juice than in puree (1.16-versus 0.74-log reduction at 300 MPa). This research illustrates use of predictive inactivation and a feasible means for manipulating HPP parameters for effective virus inactivation in fruit juices and puree.

You do not currently have access to this content.