Enterococcus faecium KE82, isolated from traditional Greek Graviera cheese, was identified in pure broth cultures in vitro as a multiple enterocin–producing bacterial strain possessing the structural entA, entB, and entP enterocin genes. E. faecium KE82 was further assessed for in situ antilisterial activity in raw milk (RM) and commercially thermized milk (TM; 63°C for 30 s) in the presence of the indigenous microbiota and in sterile raw milk (SRM; 121°C for 5 min) with or without the addition of two commercial starter culture (CSC) strains Streptococcus thermophilus and Lactococcus lactis. Growth of Listeria monocytogenes was completely inhibited in RM incubated at 37°C for 6 h, whereas the pathogen was significantly inactivated in RM+KE82 samples during further incubation at 18°C for 66 h. In contrast, L. monocytogenes levels increased by approximately 2 log CFU/ml in TM, but in TM+KE82 samples, pathogen growth was retarded during the first 6 h at 37°C followed by growth cessation and partial inactivation at 18°C. After 48 to 72 h, growth of L. monocytogenes in SRM+CSC samples decreased by 4 to 5 log CFU/ml compared with the SRM control, whereas additional 10-fold decreases in the pathogen were observed in SRM+CSC+KE82 samples. Reverse transcription PCR analysis of SRM+KE82 and SRM+CSC+KE82 samples confirmed that the entA and entB genes were transcribed, but entP gene transcription was not detected. All RM and SRM samples inoculated with E. faecium KE82 displayed strong in situ inhibitory activity against L. monocytogenes in well diffusion bioassays, whereas activity was weaker to undetectable in comparable or additional TM+KE82 samples; no milk sample without E. faecium KE82 had activity against L. monocytogenes. The findings of this study indicate that E. faecium KE82 is an antilisterial agent that could be used in traditional dairy foods because it concomitantly produces enterocins A and B in situ in milk.

You do not currently have access to this content.