Human Campylobacter infections, a leading foodborne illness globally, has been linked with the high prevalence of this bacterium on raw retail chicken products. Reduction of Campylobacter counts on poultry products would greatly reduce the risk of subsequent infections in humans. To this end, this study investigated the potential of the phytophenolic compound β-resorcylic acid (BR) to reduce Campylobacter counts on postharvest poultry (chicken skin or meat). Four trials in total, two each on thigh skin or breast meat, were conducted in which chicken skin or meat samples (2 ± 0.1 g; 10 samples per treatment) were inoculated with 50 μL (∼106 CFU per sample) of a cocktail of four wild strains of C. jejuni. After 30 min of attachment, inoculated samples were dipped in a 0, 0.5, 1, or 2% BR solution for 30 s immediately followed by vigorously vortexing the samples in Butterfield's phosphate diluent and plating the supernatant for Campylobacter enumeration. In addition, the effect of BR on the color of skin and meat samples was studied. Moreover, the change in the expression of survival and virulence genes of C. jejuni exposed to BR was evaluated. Data were analyzed by the PROC MIXED procedure of SAS (P < 0.05; SAS Institute Inc., Cary, NC). All BR treatments significantly reduced Campylobacter populations on both chicken or meat samples by 1 to 3 log CFU/g compared with non–BR-treated washed controls. No significant difference in the lightness, redness, and yellowness of skin and meat samples was observed on exposure to BR wash (P > 0.05). Real-time PCR results revealed that BR treatment down-regulated expression of select genes coding for motility (motA, motB) and attachment (cadF, ciaB) in the majority of C. jejuni strains. Stress response genes (sodB, katA) were upregulated in C. jejuni S-8 (P < 0.05). Overall, our results suggest that BR could be effectively used as antimicrobial dip treatment during poultry processing for reducing Campylobacter on chicken carcasses.

You do not currently have access to this content.