ABSTRACT

All-pork mortadella, an Italian-style deli meat, was produced by a local artisanal meat producer with or without 1.0 or 1.5% liquid buffered vinegar (LBV), 0.4, 0.6, or 1.0% dry buffered vinegar (DBV), or a 2.5% blend of potassium lactate and sodium diacetate (KLac). In each of three trials, mortadella was sliced (ca. 1.5 cm thick, ca. 30 g) and surface inoculated with 250 μL per side of a five-strain mixture of Listeria monocytogenes (ca. 3.8 log CFU per slice). The packages were vacuum sealed and then stored at 4 or 12°C. In the absence of antimicrobials, L. monocytogenes levels increased by ca. 2.6 and 6.0 log CFU per slice after up to 120 or 28 days at 4 or 12°C, respectively. With inclusion of 1.0 or 1.5% LBV, 1.0% DBV, or 2.5% KLac as ingredients, pathogen levels decreased by ca. 0.3 to 0.7 log CFU per slice after 120 days at 4°C, whereas with inclusion of 0.4 or 0.6% DBV, L. monocytogenes levels increased by ca. 1.2 and 0.8 log CFU per slice, respectively. After 28 days at 12°C, inclusion of 2.5% KLac, 1.0 or 1.5% LBV, or 0.4 or 0.6% DBV resulted in a ca. 1.4- to 5.7-log increase in L. monocytogenes levels. When 1.0% DBV was included in the formulation, pathogen levels remained unchanged after 28 days at 12°C. However, product quality was lessened at this abusive storage temperature (12°C) for all treatments by the end of storage. Thus, inclusion of LBV or DBV, as clean-label ingredients, in mortadella is equally effective as KLac for controlling L. monocytogenes during storage at 4°C without adversely affecting product quality.

You do not currently have access to this content.