This study was conducted to investigate antibacterial properties of the colloidal silver nanoparticles (SNPs) and eugenol, alone and in combination, on Staphylococcus aureus and Salmonella Typhimurium and their interactions with food constituents (fat, protein, and carbohydrate). We examined antibacterial activities of SNPs and eugenol in Luria-Bertani (LB) broth and 1.5 and 3% fat ultrahigh-temperature (UHT) milk. MICs of eugenol and SNPs (particle size of 31.3 nm) were also investigated in the presence of sunflower oil, meat extract, and starch at concentrations of 2, 5, and 10% to examine the interactions between food constituents and antimicrobial agents. MICs and MBCs of eugenol and SNPs for both bacteria were at 2,500 and 25 μg/mL, respectively. Combinations of the two substances had additive and synergistic effects on Salmonella Typhimurium and S. aureus, respectively. Both compounds had bactericidal activity. In food matrices, results indicated that eugenol only in sunflower oil at 5 and 10% concentrations had significant antibacterial activity. A similar result was achieved for SNPs with 10% meat extract. In LB broth, eugenol at 2,500 and 5,000 μg/mL achieved 6-log reductions in the microbial population of both bacteria after 3 h, while SNPs achieved the same effect after 9 h. In UHT milk with 1.5% fat, eugenol at 5,000 μg/mL and SNPs at 25 μg/mL achieved 6-log reductions in bacterial populations after 24 h. Thus, the antimicrobial activity of both eugenol and SNPs depended on the medium in which the experiment was conducted, and the combination of both antimicrobial agents increased the antimicrobial effect.


  • The interactions of eugenol, nanoparticles, and food constituents were investigated.

  • Eugenol and SNP had synergistic effects on S. aureus.

  • Protein and lipids reduced the efficacy of eugenol.

  • Protein negatively impacted the activity of SNPs.

You do not currently have access to this content.