Vapor phase hydrogen peroxide (H2O2) can be utilized to inactivate murine norovirus (MNV), a surrogate of human norovirus, on surface areas. However, vapor phase H2O2 inactivation of virus on fruits and vegetables has not been characterized. In this study, MNV was used to determine whether vaporized H2O2 inactivates virus on surfaces of various fruits and vegetables (apples, blueberries, cucumbers, and strawberries). The effect of vapor phase H2O2 decontamination was investigated with two application systems. Plaque assays were performed after virus recovery from untreated and treated fresh produce to compare the quantity of infective MNV. The Mann-Whitney U test was applied to the test results to evaluate the virus titer reductions of treated food samples, with significance set at P ≤ 0.05. The infective MNV populations were significantly reduced on smooth surfaces by 4.3 log PFU (apples, P < 0.00001) and 4 log PFU or below the detection limit (blueberries, P = 0.0074) by treatment with vapor phase H2O2 (60 min, maximum of 214 ppm of H2O2). Similar treatments of artificially contaminated cucumbers resulted in a virus titer reduction of 1.9 log PFU. Treatment of inoculated strawberries resulted in 0.1- and 2.8-log reductions of MNV. However, MNV reduction rates on cucumbers (P = 0.3809) and strawberries (P = 0,7414) were not significant. Triangle tests and color measurements of untreated and treated apples, cucumbers, blueberries, and strawberries revealed no differences in color and consistency after H2O2 treatment. No increase of the H2O2 concentration in treated fruits and vegetables compared with untreated produce was observed. This study reveals for the first time the conditions under which vapor phase H2O2 inactivates MNV on selected fresh fruit and vegetable surfaces.

  • Produce was treated with vapor phase H2O2 for 60 min (maximum of 260 ppm of H2O2).

  • A 4-log reduction in MNV was achieved by H2O2 treatment on apples and blueberries.

  • Reductions of MNV on treated strawberries and cucumbers were not significant.

You do not currently have access to this content.