Fresh produce, such as blueberries, continues to be a source of foodborne illness in the United States. Despite new practices and intervention technologies, blueberries and other produce are contaminated with foodborne pathogens, such as Salmonella. The aim of this study was to evaluate the efficacy of chlorine dioxide gas (CDG) against Salmonella enterica serovars Newport, Stanley, Muenchen, and Anatum on artificially contaminated whole fresh blueberries. Blueberries were dip inoculated into a 400-mL bath containing a Salmonella serovar cocktail of either ca. 6 or 9 log CFU/mL. Samples were dried for either 2 or 24 h before treatment with 1.5 or 3 mg of CDG/L of air to a final treatment of 3.55 to 6 ppm/h/g of blueberry. Salmonella cells were recovered by stomaching CDG-treated and nontreated control samples with 0.1% peptone and enumerated on xylose lysine Tergitol 4 agar. CDG treatments achieved up to a 5.63-log CFU/g reduction of the cocktail using 5.5 ppm/h/g, whereas the lowest treatment, 4 ppm/h/g (1.5 mg of CDG/L), was still capable of a 4.45-log CFU/g reduction. Incubation time significantly (P < 0.001) affected CDG efficacy against both inoculation concentrations. Additionally, all serovars responded similarly to CDG treatment when tested individually (P > 0.0691). Finally, the availability of a water reservoir during treatments did not have a significant effect (P = 0.9818) on CDG efficacy in this study. Our results demonstrate that CDG can be an efficacious treatment option for whole blueberry decontamination.

  • ClO2 gas treatments reduced Salmonella populations on blueberry in excess of 99.99%.

  • Salmonella cells firmly attached on blueberries are harder to inactivate.

  • Salmonella monocultures respond similarly to ClO2 gas treatments.

  • Water reservoir is not necessary when commercial ClO2 is used with respiring produce.

You do not currently have access to this content.