This research study was conducted to evaluate treatments with UVC light and a combination of UVC and ozone that have recently received attention from the beef processing industry as antimicrobial interventions that leave no chemical residues on products. The effectiveness of UVC and UVC plus gaseous ozone treatments was evaluated for inactivation of pathogenic bacteria on fresh beef and for any impact on fresh beef quality. Fresh beef tissues were inoculated with cocktails of Shiga toxin–producing Escherichia coli (STEC) strains (serotypes O26, O45, O103, O111, O121, O145, and O157:H7), Salmonella, and Listeria monocytogenes. Inoculated fresh beef tissues were subjected to UVC or UVC-ozone treatments at 106 to 590 mJ/cm2. UVC treatment alone or in combination with ozone reduced populations of STEC, Salmonella, L. monocytogenes, and aerobic bacteria from 0.86 to 1.49, 0.76 to 1.33, 0.5 to 1.14, and 0.64 to 1.23 log CFU, respectively. Gaseous ozone alone reduced populations of E. coli O157:H7, Salmonella, and L. monocytogenes by 0.65, 0.70, and 0.33 log CFU, respectively. Decimal reduction times (D-values) for STEC serotypes, Salmonella, and L. monocytogenes on surfaces of fresh beef indicated that the UVC-ozone treatment was more effective (P ≤ 0.05) than UVC light alone for reducing pathogens on the surface of fresh beef. Exposure to UVC or UVC plus gaseous ozone did not have a deleterious effect on fresh meat color and did not accelerate the formation of oxidative rancidity. These findings suggest that UVC and UVC in combination with gaseous ozone can be useful for enhancing the microbial safety of fresh beef without impairing fresh beef quality.

  • UVC light and UVC plus ozone treatments improved the microbial safety of fresh beef.

  • UVC light and UVC plus ozone treatments did not negatively affect fresh meat quality.

  • Commercial process factors for UVC light and UVC-ozone treatments need further study.

You do not currently have access to this content.