In this study, we compared the efficiency of culture-based methods with or without membrane filtration, real-time PCR, and digital droplet PCR (ddPCR) for the detection of Campylobacter in fresh produce. Alfalfa sprouts, clover sprouts, coleslaw, and lettuce salad spiked with Campylobacter jejuni were enriched in Bolton broth for 48 h, and enrichment cultures were either directly inoculated onto modified charcoal-cefoperazone-deoxycholate agar or applied on membrane filters placed on the surface of plating media. In parallel, 2-mL Bolton broth cultures were taken to extract DNA for real-time PCR and ddPCR assays and bacterial community analysis. A developed primer set for ddPCR and real-time PCR was evaluated for its inclusivity and exclusivity using pure culture of C. jejuni and non–C. jejuni strains, respectively. In pure culture, the primer set reacted only with C. jejuni strains and showed negative reaction to non–C. jejuni strains. There was no significant difference (P > 0.05) in the detection efficiency of positive Campylobacter isolates from coleslaw and lettuce salad using four detection methods. However, for sprout samples, the detection efficiency of the culture method was significantly (P < 0.05) lower than those of the two PCR assays and the filtration method. The analysis also revealed the presence of Pseudomonas and Acinetobacter as the most prevalent competing microbiota in enriched culture and only Acinetobacter on agar plates in the selective culture step.

  • Culture method showed inferior detection ability to PCR and filtration in sprouts.

  • Filter method showed similar detection ability to PCR in all samples.

  • Pseudomonas and Acinetobacter are common competing flora in the enrichment step.

You do not currently have access to this content.