Although high-temperature heat treatments can efficiently reduce pathogen levels, they also affect the quality and nutritional profile of foods and increase the cost of processing. The food additive butyl para-hydroxybenzoate (BPB) was investigated for its potential to synergistically enhance thermal microbial inactivation at mild heating temperatures (54 to 58°C). Four foodborne pathogenic bacteria, Cronobacter sakazakii, Salmonella enterica Typhimurium, attenuated Escherichia coli O157:H7, and Listeria monocytogenes, were cultured to early stationary phase and then subjected to mild heating at 58, 55, 57, and 54°C, respectively, in a model food matrix (brain heart infusion [BHI]) containing low concentrations of BPB (≤125 ppm). The temperature used with each bacterium was selected based on the temperature that would yield an approximately 1- to 3-log reduction over 15 min of heating in BHI without BPB in a submerged coil system. The inclusion of BPB at ≤125 ppm resulted in significant enhancement of thermal inactivation, achieving 5- to >6-log reductions of the gram-negative strains with D-values of <100 s. A 3- to 4-log reduction of L. monocytogenes was achieved with a similar treatment. No significant microbial inactivation was noted in the absence of mild heating for the same time period. This study provides additional proof of concept that low-temperature inactivation of foodborne pathogens can be realized by synergistic enhancement of thermal inactivation by additives that affect microbial cell membranes.

  • BPB significantly enhanced inactivation of four foodborne bacteria at mild temperatures.

  • The combination of mild heating and BPB had a synergistic effect on foodborne pathogens.

  • Enhancement of thermal inactivation was greater in the gram-negative bacteria.

You do not currently have access to this content.