We investigated whether the co-occurrence of phytopathogens (Clavibacter michiganensis subsp. michiganensis [Cmm] and Xanthomonas gardneri [Xg]) frequently encountered in tomato production and Salmonella enterica subsp. enterica serotype Typhimurium (strain JSG626) affects the persistence of these pathogens in tomato plant tissues during the early stages of plant growth. Cmm increased the recovery of Salmonella Typhimurium (up to 1.8 log CFU per plant at 21 days postinoculation [DPI]) from coinoculated tomato plants compared with plants inoculated with Salmonella Typhimurium alone (P < 0.05). Xg had no effect on Salmonella Typhimurium persistence in the plants. Increased persistence of Salmonella Typhimurium was also observed when it was inoculated 7 days after Cmm inoculation of the same plant (P < 0.05). In contrast, Salmonella Typhimurium reduced the population of both Cmm and Xg (up to 1.5 log CFU per plant at 21 DPI; P < 0.05) in coinoculated plants compared with plants inoculated with Cmm or Xg alone. The Xg population increased (1.16 log CFU per plant at 21 DPI; P < 0.05) when Salmonella Typhimurium was inoculated 7 days after Xg inoculation compared with plants inoculated with Xg alone. Our findings indicate that the type of phytopathogen present in the phyllosphere and inoculation time influence the persistence of Salmonella Typhimurium JSG626 and its interactions with phytopathogens cocolonized in tomato plants. Salmonella reduced the phytopathogen load in plant tissues, and Cmm enhanced the recovery of Salmonella from the coinoculated plant tissues. However, further investigations are needed to understand the mechanisms behind these interactions.

  • Salmonella Typhimurium inhibited two phytopathogens coinoculated in tomato plant tissues.

  • Inhibition of the phytopathogens might be associated with an antimicrobial effect.

  • C. michiganensis subsp. michiganensis enhanced Salmonella Typhimurium persistence.

You do not currently have access to this content.