ABSTRACT

Fibrinolytic enzymes are effective and highly safe in treating cardiovascular and cerebrovascular diseases. Therefore, screening fibrinolytic enzyme-producing microbial strains with excellent fermentation performance is of great value to industrial applications. The fibrin plate method was used in screening strains with high yields of fibrinolytic enzymes from different fermented food products, and the screened strains were preliminarily identified using molecular biology. Then, the strains were used for solid-state fermentation of soybeans. Moreover, the fermentation product douchi was subjected to fibrinolytic activity measurement, sensory evaluation, and biogenic amine content determination. The fermentation performance of each strain was comprehensively evaluated through principal component analysis. Finally, the target strain was identified based on strain morphology, physiological and biochemical characteristics, 16S rDNA sequence, and phylogenetic analysis results. A total of 15 Bacillus species with high fibrinolysin activity were selected. Their fibrinolytic enzyme-producing activity levels were higher than 5,500 IU/g. Through molecular biology analysis, we found 4 strains of Bacillus subtilis, 10 strains of Bacillus amyloliquefaciens, and 1 strain of Bacillus velezensis. The principal component analysis results showed that SN-14 had the best fermentation performance and reduced the accumulation of histamine and total amine, the fibrinolytic activity of fermented douchi reached 5,920.5 ± 107.7 IU/g, and the sensory score was 4.6 ± 0.3 (out of 5 points). Finally, the combined results of physiological and biochemical analyses showed SN-14 was Bacillus velezensis. The high-yield fibrinolytic and excellent fermentation performance strain Bacillus velezensis SN-14 has potential industrial application.

HIGHLIGHTS
  • A total of 15 strains with high fibrinolytic activity are identified and isolated.

  • Bacillus velezensis SN-14 can reduce the accumulation of histamine.

  • SN-14 has the best fermentation performance.

  • Principal component analysis is used in evaluating fermentation performance.

You do not currently have access to this content.