A partial factorial design study of the effect of NaNO2 (0, 100, 200, 1000 ppm) in combination with NaCl (0.5, 2.5, 4.0%), pH (7.5, 6.5, 5.5), and temperature (37, 28, 19°C) on growth of Shigella flexneri is reported. Experiments were done aerobically in brain-heart infusion medium, using an inoculum of 1 × 103 CFU/ml. Growth curves were fitted from plate count data by the Gompertz equation; exponential growth rates, lag times, generation times, and maximum populations were derived for all variable combinations. In the absence of nitrite, the organism grew well under all test conditions at 37 and 28°C but did not grow at 19°C at pH 5.5 nor at pH 7.5 with 4% NaCl. Nitrite did not affect growth in media of pH 7.5 at 37 and 28°C. At pH 6.5 growth was inhibited by 1000 ppm NaNO2. The organism failed to grow at 19°C at all nitrite levels in the presence of 2.5 or 4.0% NaCl. The inhibitory effect of nitrite was much greater in media of pH 5.5 and increased with increasing salt levels. More inhibition was apparent at 28 than at 37°C. While lack of growth was used as a paradigm of the effect of nitrite on S. flexneri, nitrite also increased the lag and generation times and decreased the exponential growth rate. Results indicated that NaNO2 in combinations with low temperature, low pH, and high salt content can effectively inhibit the growth of S. flexneri.

This content is only available as a PDF.

Author notes

Presented at the 46th Annual Meeting of the Society for Industrial Microbiology, Seattle, WA, August 13–18, 1989.