Human pathogenic viruses have been detected from approved shellfish harvesting waters based on the fecal coliform indicator. Until recently it was difficult to assess viral contamination and the potential impact on public health. Risk assessment is a valuable tool which can be used to estimate adverse effects associated with microbial hazards. This report describes the use of quantitative risk assessment for evaluating potential human health impacts associated with exposure to viral contamination of shellfish. The four fundamental steps used in a formal risk assessment are described within and include i) Hazard identification, ii) Dose-response determination, iii) Exposure assessment, and iv) Risk characterization. Dose-response models developed from human feeding studies were used to evaluate the risk of infection from contaminated shellfish. Of 58 pooled samples, 19% were found to be positive for viruses. Using an echovirus-12 probability model, the individual risk was determined for consumption of 60 g of raw shellfish. Individual risks ranged from 2.2 × 10−4 to 3.5 × 10−2. These data suggest that individuals consuming raw shellfish from approved waters in the United States may have on the average a 1 in 100 chance of becoming infected with an enteric virus. Using the rotavirus model which represents a more infectious virus, the risk rose to 5 in 10. The potential for use of a risk assessment approach for developing priorities and strategies for control of disease is immense. Epidemiological data have demonstrated the significance of shellfish-associated viral disease and, although limited, appropriate virus occurrence data are available. Additional information on virus occurrence and exposure is needed, and then scientific risk assessment can be used to better assure the safety of seafood.

This content is only available as a PDF.