Two proteinases, a neutral proteinase from Bacillus subtilis and a cysteine proteinase from Micrococcus sp., were used to accelerate the ripening process of raw cow's milk Hispánico cheese, a semihard variety. Two levels (0.1% and 1%) of a commercial starter culture containing Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris were added for cheese manufacture. The influence of both factors, proteinase addition and level of starter culture, on the growth of amino acid–decarboxylating microorganisms and on the formation of biogenic amines during cheese ripening was investigated in duplicate experiments. The population of tyrosine decarboxylase–positive bacteria, which represented less than 1% of the total bacterial population in most cheese samples, and tyrosine decarboxylase–positive lactobacilli was not influenced by proteinase addition or level of starter culture. Tyramine was detected in all batches of cheese from day 30. Its concentration was significantly (P < 0.05) influenced by proteinase addition but not by the level of starter culture and increased with cheese age. After 90 days of ripening, 103 to 191 mg/kg of tyramine was found in the different cheese batches. Histamine was not detected until day 60 in cheese with neutral proteinase and 1% starter culture and until day 90 in the rest of the cheeses. The concentration of this amine did not exceed 20 mg/kg in any of the batches investigated. Phenylethylamine and tryptamine were not found in any of the samples.

This content is only available as a PDF.