Scanning electron microscopy observation was used to investigate the adhesion of Escherichia coli O157:H7 on water distribution pipe surfaces such as copper and polyethylene plastic at different contact times and storage temperatures. Our results indicated that E. coli cells could easily attach to both surface types after exposures as short as 1 or 4 h at ambient (20°C) and refrigeration temperatures (4°C). Also, we found that copper surfaces have a higher number of attached E. coli cells than plastic surfaces. The number of cells attached to each type of material depended on the nature of the water distribution pipe surfaces and the length of contact time. In addition, the surface energy value of each surface estimated by contact angle measurements using water, ∝-bromonaphthalene, and dimethyl sulfoxide as wetting agents showed that both copper (41.2 megajoules [MJ]·m−2) and plastic (45.8 MJ·m−2) have a low energy surface. In no cases could evidence of extracellular material be observed on surfaces with either exposure condition.

This content is only available as a PDF.