Salmonellosis has been linked to the consumption of several types of raw fruits and vegetables, some of which may have been contaminated with Salmonella before harvesting. The objectives of this study were to investigate water and soil as reservoirs of Salmonella for the contamination of mature green tomato fruits. Salmonella survived for at least 45 days in inoculated moist soil. The population of Salmonella on tomatoes in contact with soil increased by 2.5 log10 CFU per tomato during storage for 4 days at 20°C and remained constant for an additional 10 days. The number of cells inoculated on tomatoes decreased by approximately 4 log10 CFU per tomato during storage for 14 days at 20°C and 70% relative humidity. Fruits in contact with inoculated soil for 1 day at 20°C harbored Salmonella only near or on the skin surface. More Salmonella cells were observed in stem scar and subsurface areas of tomatoes as the time of storage increased. PCR fingerprinting revealed that among five Salmonella serotypes in the inoculum, Salmonella Montevideo was the most persistent on tomatoes in contact with inoculated soil and on spot-inoculated tomatoes, followed by Salmonella Poona and Salmonella Michigan. The results of this study demonstrate that an enhanced green fluorescent protein marker can be used to detect cells and monitor the growth of Salmonella in the presence of other microorganisms. Observations on the infiltration of Salmonella into tomato tissues support the contention that preharvest contact of produce with contaminated water or soil exacerbates problems associated with the postharvest removal of pathogens or their accessibility to treatment with sanitizers.

This content is only available as a PDF.