Twenty-one strains of commercial wine yeasts and 17 non-Saccharomyces species of different provenance were surveyed for their ability to produce hydrogen sulphide in synthetic grape juice medium indicator agar with different nitrogen sources, as well as in natural grape juice. Bacto Biggy agar, a commercially available bismuth-containing agar, was used to compare our results with others previously reported in the literature. Under identical physiological conditions, the strains used in this study displayed similar growth patterns but varied in colony color intensity in all media, suggesting significant differences in sulphite reductase activity. Sulphite reductase activity was absent for only one strain of Saccharomyces cerevisiae. All other strains produced an off-odor to different extents, depending significantly (P <0.05) on medium composition. Within the same species of some non-Saccharomyces yeasts, strain variation existed as it did for Saccharomyces. In natural musts, strains fell into three major groups: (i) nonproducers, (ii) must-composition-dependent producers, and (iii) invariable producers. In synthetic media, the formation of sulphide by strains of S. cerevisiae results from the reduction of sulphate. Therefore, this rapid screening methodology promises to be a very useful tool for winemakers for determining the risk of hydrogen sulphide formation by a given yeast strain in a specific grape juice.

This content is only available as a PDF.