Quorum sensing is a signaling mechanism through which bacteria modulate a number of cellular functions (genes), including sporulation, biofilm formation, bacteriocin production, virulence responses, as well as others. Quorum sensing is a mechanism of cell-to-cell communication and is mediated by extracellular chemical signals generated by the bacteria when specific cell densities are reached. When the concentration of the signal (and cell population) is sufficiently high, the target gene or genes are either activated or repressed. Quorum sensing increases the ability of the bacteria to have access to nutrients or to more favorable environmental niches and enhances bacterial defenses against eukaryotic hosts, competing bacteria, and environmental stresses. The physiological and clinical aspects of quorum sensing have received considerable attention and have been studied at the molecular level. Little is known, however, on the role of quorum sensing in food spoilage or in the growth and/or toxin production of pathogens present in food. A number of compounds have been isolated or synthesized that antagonize quorum sensors, and application of these antagonists may potentially be useful in inhibiting the growth or virulence mechanisms of bacteria in different environments, including food. It is important that food microbiologists have an awareness and an understanding of the mechanisms involved in bacterial quorum sensing, since strategies targeting quorum sensing may offer a means to control the growth of undesirable bacteria in foods.

This content is only available as a PDF.

Author notes

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.