Foodborne illness due to consumption of contaminated seafood is, unfortunately, a regular occurrence in the United States. Ionizing (gamma) radiation can effectively inactivate microorganisms and extend the shelf life of seafood. In this study, the ability of gamma irradiation to inactivate foodborne pathogens surface inoculated onto frozen seafood (scallops, lobster meat, blue crab, swordfish, octopus, and squid) was investigated. The radiation D10-values (the radiation dose needed to inactivate 1 log unit of a microorganism) for Listeria monocytogenes, Staphylococcus aureus, and Salmonella inoculated onto seafood samples that were then frozen and irradiated in the frozen state (−20°C) were 0.43 to 0.66, 0.48 to 0.71, and 0.47 to 0.70 kGy, respectively. In contrast, the radiation D10-value for the same pathogens suspended on frozen pork were 1.26, 0.98, and 1.18 kGy for L. monocytogenes, S. aureus, and Salmonella, respectively. The radiation dose needed to inactivate these foodborne pathogens on frozen seafood is significantly lower than that for frozen meat or frozen vegetables.

This content is only available as a PDF.

Author notes

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.