Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-3 of 3
CAMERON A. BARDSLEY
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Food Protection
Journal of Food Protection (2020) 84 (4): 597–610.
Published: 24 November 2020
Abstract
ABSTRACT Listeria monocytogenes was associated with more than 60 produce recalls, including tomato, cherry, broccoli, lemon, and lime, between 2017 and 2020. This study describes the effects of temperature, time, and food substrate as factors influencing L. monocytogenes behavior on whole intact raw fruits and vegetables. Ten intact whole fruit and vegetable commodities were chosen based on data gaps identified in a systematic literature review. Produce investigated belong to major commodity families: Ericaceae (blackberry, raspberry, and blueberry), Rutaceae (lemon and mandarin orange), Roseaceae (sweet cherry), Solanaceae (tomato), Brassaceae (cauliflower and broccoli), and Apiaceae (carrot). A cocktail of five L. monocytogenes strains that included clinical, food, or environmental isolates linked to foodborne outbreaks was used to inoculate intact whole fruits and vegetables. Samples were incubated at 2, 12, 22, 30, and 35°C with relative humidities matched to typical real-world conditions. Foods were sampled ( n = 6) for up to 28 days, depending on temperature. Growth and decline rates were estimated using DMFit, an Excel add-in. Growth rates were compared with ComBase modeling predictions for L. monocytogenes . Almost every experiment showed initial growth, followed by subsequent decline. L. monocytogenes was able to grow on the whole intact surface of all produce tested, except for carrot. The 10 produce commodities supported growth of L. monocytogenes at 22 and 35°C. Growth and survival at 2 and 12°C varied by produce commodity. The standard deviation of the square root growth and decline rates showed significantly larger variability in both growth and decline rates within replicates as temperature increased. When L. monocytogenes growth occurred, it was conservatively modeled by ComBase Predictor, and growth was generally followed by decreases in concentration. This research will assist in understanding the risks of foodborne disease outbreaks and recalls associated with L. monocytogenes on fresh whole produce. HIGHLIGHTS L. monocytogenes grew on intact surfaces of 10 commodities tested, except carrot. L. monocytogenes growth was generally followed by decreases in concentration. Fastest rates of increase were generally followed by the fastest rates of decline. Variability in growth and decline rates was larger as temperature increased. L. monocytogenes growth was conservatively modeled by ComBase Predictor.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Food Protection
Journal of Food Protection (2020) 83 (5): 858–864.
Published: 04 February 2020
Abstract
ABSTRACT Understanding a food's ability to support the growth and/or survival of a pathogen throughout the supply chain is essential to minimizing large-scale contamination events. The purpose of this study was to examine the behavior (growth and/or survival) of Listeria monocytogenes on broccoli and cauliflower florets stored at different postharvest temperatures utilized along the supply chain. Broccoli and cauliflower samples were inoculated with L. monocytogenes at approximately 3 log CFU/g and stored at 23 ± 2, 12 ± 2, 4 ± 2, and −18 ± 2°C. Samples were evaluated for L. monocytogenes levels after 0, 0.167 (4 h), 1, 2, 3, and 4 days at 23 ± 2°C; 0, 0.167, 1, 2, 3, 4, 7, 10, and 14 days at 12 ± 2°C; 0, 0.167, 1, 2, 3, 4, 7, 10, 14, 21, and 28 days at 4 ± 2°C; and 0, 1, 7, 28, 56, 84, 112, 140, and 168 days at −18 ± 2°C. L. monocytogenes populations were determined by plating samples onto tryptic soy agar and modified Oxford agar supplemented with nalidixic acid. Broccoli and cauliflower supported the growth of L. monocytogenes at 23, 12, and 4°C, and higher growth rates were observed at higher temperatures. Populations of L. monocytogenes on broccoli and cauliflower samples significantly increased within 1 day at 23°C (by 1.6 and 2.0 log CFU/g, respectively) ( P ≤ 0.05). At 12°C, populations of L. monocytogenes on broccoli and cauliflower samples significantly increased over 14 days by 1.4 and 1.9 log CFU/g, respectively ( P ≤ 0.05). No significant difference over time was observed in L. monocytogenes populations on broccoli and cauliflower samples held under refrigeration until populations began to grow by day 10 in both commodities ( P > 0.05). Under frozen storage (−18°C), populations of L. monocytogenes survived on broccoli and cauliflower at least up to 168 days. Storage of broccoli and cauliflower at lower temperatures can minimize L. monocytogenes growth potential; growth rates were lower at 4°C than at 12 and 23°C. HIGHLIGHTS Broccoli and cauliflower supported L. monocytogenes growth at 23, 12, and 4°C. L. monocytogenes survived up to at least 168 days on frozen broccoli and cauliflower. L. monocytogenes growth rates on both commodities were higher at 23°C than at 12 and 4°C. L. monocytogenes growth was not observed until day 10 on both commodities stored at 4°C.
Journal Articles
CAMERON A. BARDSLEY, LAURA N. TRUITT, RACHEL C. PFUNTNER, MICHELLE D. DANYLUK, STEVEN L. RIDEOUT ...
Journal:
Journal of Food Protection
Journal of Food Protection (2019) 82 (2): 301–309.
Published: 25 January 2019
Abstract
ABSTRACT Cucumbers were associated with four multistate outbreaks of Salmonella in the United States between 2013 and 2016. This study evaluated the fate of Listeria monocytogenes and Salmonella on whole and sliced cucumbers at various storage temperatures. Cucumbers were inoculated with five-strain cocktails of L. monocytogenes or Salmonella, air dried, and stored at 23 ± 2, 4 ± 2, and −18 ± 2°C. Whole and sliced cucumber samples were enumerated on nonselective and selective media at 0, 0.21, 1, 2, 3, and 4 days (23 ± 2°C); 0, 1, 2, 3, 7, 14, and 21 days (4 ± 2°C); and 0, 7, 28, 60, 90, and 120 days (−18 ± 2°C). For Salmonella, additional time points were added at 8 and 17 h (23 ± 2°C) and at 17 h (4 ± 2°C). Population levels were calculated for whole (CFU per cucumber) and sliced (CFU per gram) cucumbers. Both pathogens grew on whole and sliced cucumbers held at ambient temperatures. At 23 ± 2°C, L. monocytogenes and Salmonella populations significantly increased on whole (2.3 and 3.4 log CFU per cucumber, respectively) and sliced (1.7 and 3.2 log CFU/g, respectively) cucumbers within 1 day. Salmonella populations significantly increased on whole and sliced cucumbers after only 5 h (2.1 log CFU per cucumber and 1.5 log CFU/g, respectively), whereas L. monocytogenes populations were not significantly different on whole and sliced cucumbers at 5 h. L. monocytogenes and Salmonella populations survived up to 21 days on refrigerated whole and sliced cucumbers. At 4 ± 2°C, L. monocytogenes populations significantly increased on whole (2.8 log CFU per cucumber) and sliced (2.9 log CFU/g) cucumbers, whereas Salmonella populations significantly decreased on whole (0.6 log CFU per cucumber) and sliced (1.3 log CFU/g) cucumbers over 21 days. Both pathogens survived on frozen whole and sliced cucumbers for at least 120 days. The ability of L. monocytogenes and Salmonella to grow on whole and sliced cucumbers in short amounts of time at ambient temperatures, and to survive on whole and sliced cucumbers past the recommended shelf life at refrigeration temperatures, highlights the need to reduce the likelihood of contamination events throughout the cucumber supply chain.